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Heat stress is one of the most stressful events in livestock life, negatively impacting animal health, productivity, and

product quality. 
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1. Introduction

Food quality is a very complex and broad concept that has changed rapidly in recent years. Recently, it has represented

the set of all food properties that are closely related to physicochemical properties, texture, and taste that are acceptable

and satisfying to consumers. Previous studies showed that consumers’ concerns about food quality have been increasing,

in recent decades, particularly concerning the perceived healthiness of food . Meat and various meat products are

important sources of high-quality proteins, fats, and minerals as essential nutrients . As animal welfare concerns grow

and consumers become more conscious of food quality, there is an increasing focus on improving the quality, safety, and

nutritional value of meat. Based on current knowledge, increasing global warming and climate change appear to pose a

potential threat to food security in the coming decades . Heat stress (HS) is one of the major impacts of climate

change (CC) on livestock raised in both intensive and extensive production systems . This is especially true given its

negative impact on behavior, immune response, gut integrity, productivity, and meat quality . Heat stress is a form of

hyperthermia (elevated body temperature) in which the body’s physiological systems are unable to regulate body

temperature within normal limits . It is well known that, at temperatures higher than an animal’s thermoneutral zone,

heat stress can affect animal welfare, performance, and product quality.

2. Heat Stress and Carcass Characteristics

Carcass and meat quality depend on both intrinsic and extrinsic factors. The intrinsic factors include species, breed,

gender, age, and slaughter weight. The extrinsic factors include weaning, diet, and stress . This latter can be

attributed to the breeding conditions, the transport, or the environment. To maintain euthermia, heat-stressed animals

activate some physiologic and metabolic adjustments at the expense of growth, reproductive, and productive aspects 

. For this purpose, homeothermic animals reduce their feed intake to lower metabolic heat production . However,

such an adaptive response has implications on carcass characteristics in monogastric and ruminants as well. Carcass

yield, carcass fat deposition, and intramuscular fat content were reported to be decreased in poultry , pigs ,

sheep , goats , and cattle . A reduction in subcutaneous fat was also reported in pigs subjected to chronic HS,

to enhance heat dissipation . Holinger et al.  described that the carcass of heat-stressed pigs had reduced lean meat

percentage and thicker backfat. The extent of changes indeed depends on the species, but it is known that the economic

losses caused by carcass yield loss are great . At the same time as fat content dropped, acetyl coenzyme A

carboxylase enzyme, L (+) P-hydroxy acyl CoA dehydrogenase, and lipolytic enzyme activities were decreased .

Pearce et al.  demonstrated that this decrease is independent of heat stress-induced reductions in feed intake.

Nevertheless, no significant effects on intramuscular fat were reported in broilers subjected to heat stress for 3 weeks 

and heat-stressed goats for 1 month . Similarly, Mader et al.  and Ponnampalam et al.  did not report any

significant difference between chronic heat stress (1 week) and thermal neutral groups in subcutaneous fat in cattle and

carcass fat scores in lambs. These findings may be attributed to the ability of the breeds to cope with heat stress

conditions, and to the duration and severity of HS . However, it is noteworthy to mention that although the carcass

weight was significantly affected by heat stress-induced feed intake reduction, the impacts on carcass composition are

confusing and need further investigation.

[1][2][3]

[4][5]

[6][7]

[8]

[9]

[8]

[10][11]

[12]

[13] [14]

[15][16] [17][18]

[19] [20] [19][21]

[22] [23]

[24]

[17][22]

[17]

[25]

[11] [26] [27]

[11]



3. Heat Stress and Rapid pH Drop

After slaughter, skeletal muscle undergoes physical structural, and biochemical changes. These changes are triggered by

the cession of blood flow and oxygen supply, and the scarcity of glucose resources. Under these conditions, and for

postmortem homeostasis purposes, skeletal muscle metabolizes stored glycogen for adenosine triphosphate (ATP)

synthesis and use . Lactic acid and hydrogen ions (H ) are the endeavor products of several chemical reactions

leading to the conversion of glycogen to lactic acid . Since oxygen is lacking, the electron chain is interrupted and

pyruvate can no longer enter the mitochondria . Hence, lactic acid and H  accumulate, resulting in pH lowering .

pH is widely recognized as one of the most accepted indicators of meat quality. Any homeostatic disturbance of

postmortem metabolism (e.g., such as rapid pH drop and lower pHu) leads to meat quality defects such as pale, soft, and

exudative (PSE) meat, high ultimate pH (pHu) meat (dark, firm, and dry (DFD) meat) and dark-cutting in ruminants .

Several studies associated heat stress with a high glycolysis rate and rapid pH decline, resulting in serious damage to

skeletal muscle. In broilers under short-term heat stress (36 °C, 1 h), AMP-activated protein kinase (AMPk) activity at 1 h

postmortem was greater than that of broilers under thermal neutral (25 °C) conditions . This was also the case with

broilers exposed to chronic HS . Moreover, broilers transported during summer (32–42 °C) registered a higher

adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio, increased AMPK, and lower pHu value . It is

worth noticing that some authors did not register any significant decline in ultimate pH muscle in broilers .

During and after slaughtering, HS stimulates anaerobic glycolysis within the muscles. The hydrolysis of ATP governed

primarily by pyruvate kinase and lactate dehydrogenase in anaerobic conditions then escalates. More pyruvate is

converted to lactate leading to an accumulation of H  and lactic acid . The result is a rapid pH drop which lowers the

water-holding capacity and is at the origin of PSE meat . In ruminants, heat stress results in pHu values greater than

5.8, a normal pHu muscle value . This finding may be attributed to the effect of the cortisol hormone, which

increases under HS conditions. As a result, antemortem skeletal muscle glycogen content is noteworthy reduced and

postmortem glycolytic enzyme activity is enhanced . Contrarily, in chickens, heat stress does not affect the antemortem

glycogen content . Postmortem glycolytic enzyme activity and pH drops are then faster and greater. Interestingly, some

authors demonstrated that high ambient temperature and/or long-term heat exposure may not necessarily have adverse

effects on muscle pH and meat quality . This could be explained by animals’ adaptation to heat stress . However,

rapid pH drops and meat quality damage seem to be associated with short-term exposure to acute ambient temperatures

.

4. Meat Color and Water Holding Capacity

Besides its detrimental effects on feed intake and growth rate, heat stress was reported to impact physicochemical

properties such as color, texture, WHC, and organoleptic properties such as softness, consistency, flavor, and odor in

chicken and pork . Protein denaturation is a result of HS exposure before slaughtering. As proteins are involved in

the WHC of meat, each protein damage impedes its ability to bind water. The cumulative effect leads to an impaired WHC

marked by high drip and cooking loss . In this trend, numerous studies reported increased values of heat loss and

shear force in heat-stressed meat-type broilers .

In chickens and pigs, muscles consist of fast-twitching fibers . These fibers rely mainly on anaerobic glycolysis .

Exposure to stressful ambient temperatures before slaughtering allows for augmented carcass temperature ,

accelerated glycolysis rate, increased H  and lactic acid levels, and elevated protein degradation rate. Consequently, PSE

conditions are developed . PSE meat is poorly processed meat, more dry and brittle, and has a poor texture, higher

lightness, and lower sensory score  due to its hindered WHC and protein extractability . In ruminants,

increased pHu values under heat stress conditions negatively affect the shrinkage of the myofilament lattice leading to

darker meat color. Many meat quality defects were reported, including higher light absorption, less light scattering, higher

oxygen consumption, lower WHC, and increased toughness . However, it seems that these meat quality

attributes may be influenced by the duration of heat stress exposure, and the extent of the ambient temperature .

5. Impacts of Heat Stress on Muscle Biochemical and Chemical Properties

It is known that ruminants, pigs, and poultry are highly vulnerable to HS due to their rapid metabolism and growth, high

production, and species-specific characteristics such as rumen fermentation, transpiration, and skin insulation .

Numerous studies have documented how HS affects muscles . According to Sula et al. , HS results in myocyte

fibers that are homogenously eosinophilic, hypereosinophilic, and fragmented. It has been reported that chronic HS would

increase the production of lactate in muscle and affect the meat quality. Therefore, acute HS before slaughter accelerates

muscle glycogenolysis and increases lactate concentrations in early postmortem slaughter while carcasses are still warm
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. The result is PSE meat characterized by a decreased WHC, jointly reported in poultry , but also found recently in

cattle . Contrarily, animals under chronic HS have diminished muscle glycogen stores, leading to lower lactic acid

generation, leading to DFD meat with a higher ultimate pH in ruminants , but also in pigs . Additionally, HS effects

primarily involve autonomic responses due to the activation of the autonomic nervous system (ANS), which is regulated

by catecholamines (adrenaline and norepinephrine) (Table 1). This includes increased respiration and heart rate,

increased body temperature, and the redistribution of blood flow from the intestine to the skin for thermoregulation, hence

energy utilization from body stores  promotes muscle glycogenolysis and inhibits energy storage . Both acute and

chronic HS cause increases in plasma glucocorticoid concentrations via the activation of the hypothalamic–pituitary–

adrenal (HPA) axis. Nevertheless, acute HS leads to increased glucocorticoids more than chronic HS . Glucocorticoids

enhance heat loss through vasodilation  and increase proteolysis and altered lipid metabolism; proteolysis occurs

because of an increased rate of myofibrillar protein degradation in skeletal muscle as mediated by the following

mechanisms: the Ca -dependent-ubiquitin–proteasome, and autophagy–lysosome system  (Table 1).

HS stimulates the hypothalamic–pituitary–adrenal system in poultry, increases the concentration of the circulating

hormone corticosterone , and has profound effects on protein and lipid metabolism, body composition, and meat quality

. Imiku et al.  and Lu et al.  provided evidence that HS is associated with chemical alterations in chicken meat.

High levels of the hormone corticosterone (glucocorticoid) increase fat accumulation in the abdomen, neck, and thighs 

, but boosted protein degradation and skeletal muscle breakdown , potentially via the expression of fatty acid

transport protein and the insulin receptor in the pectoralis major . The exposure of animals to HS is related to an

elevation in the expression of heat shock proteins in ruminants and pigs , most notably the small alpha βcrystallin

(αβC) heat shock protein (sHSP). Heat shock proteins are key components of living muscle that regulate the cytoskeleton

and control cell maintenance .

In rabbits, HS affects the amount of myoglobin in the muscle, which leads to a decrease in the pigment content of the

meat .

Table 1. Effects of heat stress on biochemical and chemical parameters of the muscle.

Origin Chemical Class Sub-Class References

Pigs

Steroid hormones Glucocorticoids

Carbohydrates Glycogen

Organic acid Lactic acid

Ruminants

Protein
Myofibrillar protein

alpha βcrystallin (αβC) heat shock protein (sHSP) and HSP27

Steroid hormones Glucocorticoids

Organic acid Lactic acid

Carbohydrates Glycogen

Lipid Volatile fatty acids

Broiler

Hormone
Corticosterone

Insulin

Protein alpha βcrystallin (αβC) heat shock protein (sHSP) and HSP27

Organic acid Lactic acid

Steroid hormones Glucocorticoids

Lipid Fatty acid

Rabbit

Organic acid Lactic acid

Lipids -

Proteins -

Metalloprotein Myoglobin
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