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Carbon dioxide (CO ) emissions from burning fossil fuels play a crucial role in global warming/climate change. The

effective removal of CO  from the point sources or atmosphere (CO  capture), its conversion to value-added

products (CO  utilization), and long-term geological storage, or CO  sequestration, has captured the attention of

several researchers and policymakers. 

CCUS  carbon dioxide  Gas hydrates  Net-zero  CO2 Separation

1. Introduction

Energy is the primary source of greenhouse-gas (GHG) emissions, with a share of around 76% (mainly CO

emissions). Though COVID-19 triggered an exceptional decrease in global GHG emissions in 2020, the largest-

ever annual rise in CO  emissions witnessed a CO  rise from 31.5 Gt to 36.6 Gt in 2021 . To achieve the COP26

targets established for net zero, carbon-capture utilization and storage (CCUS) technologies could be the

bottleneck. CCUS is predominantly employed to capture CO  produced from different industrial sources, such as

steel plants, power plants, chemical industries, and thermal-electric power plants. The most conventional

approaches for carbon capture are precombustion, postcombustion, and oxyfuel combustion methods . Although

there has been extensive research in direct air-capture approaches, the high capital cost has been a significant

challenge to deploying this technique. In addition, the development of CO  separation techniques (to separate CO

from flue or fuel–gas mixtures) has also gained a significant attraction for the economical deployment of carbon-

capture technologies. In this direction, adsorption, absorption, microbial, membrane separation, and

environmentally friendly techniques such as ‘gas hydrate-based’ separation and biological processes have grown

significantly around the world . The adsorption, absorption, and cryogenic distillation processes are the most

mature CO  separation methods with high separation efficiency. CO  capture through Gas hydrate-based and

membrane separation methods is highly effective due to their low energy consumption. However, these

technologies also have drawbacks, mainly temperature requirements, energy intensity, and CO  concentration

dependency . The industrial applications of CO  capture through different methods have numerous

drawbacks, restricting this process from being used commercially. 

2. CO  Separation/Capture Technologies

Research and technological advancements have created multiple novel carbon dioxide (CO ) separation methods.

The uncontrollable release of notorious anthropogenic GHGs, especially carbon dioxide, has caused major
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environmental issues. The harmful effect of CO  has motivated the development of technologies dedicated to

achieving net-zero emission goals while evaluating their efficacy, economics, and environmental impacts . The

flue gas properties (such as composition, temperature, and pressure conditions) are also important parameters for

selecting the appropriate process of CO  separation . The current scenario requires investments to mitigate

carbon emissions effectively (CO  capture and sequestration) . Some primary CO  capture techniques

investigated globally are adsorption, absorption, chemical looping combustion, membrane separation,

microbial/algal separation, hydrates-based separation, and cryogenic distillation method . Figure 1 compares

the advantages and disadvantages of different CO  capture/separation techniques mentioned above. As shown in

Figure 1, absorption, adsorption, and membrane-based separation methods offer high separation efficiency.

Though cryogenic separation is the most mature technique, the process is highly energy intensive.

Figure 1. Comparison of different separation technologies for their advantages and disadvantages.
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The absorption method is widely applicable in the petroleum, coal, and natural-gas industries for separating CO

. Removing CO  from a gas stream using different absorbents (physical and chemical) has been used in the

industrial sector for over 50 years. The absorption method is broadly divided into two types: physical and chemical

absorption . Chemical absorption is the process by which a solvent absorbs CO  and produces chemical

compounds. These chemical components are later reused by removing the absorbed CO  through different

techniques. However, if the solvent is chemically inert, it does not interact with CO . CO  is chemically absorbed in

two steps: the treated gas is initially introduced into counter-flowing interaction with the solvent stream. The solvent

absorbs CO  from the flue gas stream during this phase. As the solvent warms up, CO  is desorbed in a stripping

column, further migrating to the top of the column, where pure CO  is recovered, compressed, and stored .

On the other hand, physical solvents do not undergo any reaction with CO , making them more desirable for CO

separation processes. Henry’s law of equilibrium in vapor–liquid mixtures governs the physical absorption process.

It states that the relative gas pressure in equilibrium with the solvent at any given temperature is directly

proportional to the amount of a gaseous phase dissolved in a unit volume of the solvent. Since the physical

absorption process is pressure dependent, it performs better than chemical absorption at higher partial pressures

of CO , such as in an integrated gasification combined cycle (IGCC) power plants . The coal, natural gas,

and petroleum industries extensively use absorption techniques to segregate CO  . Kim and Yang  studied

the competence of hollow-fiber membranes in CCS with various aqueous absorbents. The capability of the hollow

polytetrafluoroethylene (PTFE) membrane filter was measured at varying temperatures. They conclude that the

absorption rate of CO  increases with the temperature rise. Sensitive absorbents such as 2-amino-2-methyl-l-

propanol (AMP) and monoethanolamines (MEA) are vastly active agents to achieve augmented rates of CO

absorption. Figure 2 shows the different categories of absorption medium broadly categorized into physical and

chemical absorption. The physical and chemical processes are further divided into five subcategories: rectisol

process, purisol process, selexol process, amine-based process, and inorganic chemical process.

Figure 2. Absorption-based CO  capture/separation processes.
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In recent years, research has been undertaken on CO  capture from fossil-fuel emission sources . The CO

absorption in aqueous media is evaluated by the equation :

CO  + 2H O ↔ HCO  + H O

Absorption of CO  into aqueous solvent was initially done to purify gases such as synthetic gas, hydrogen, and

natural gas . However, research that originated on CO  capture from fossil-fuel sources has been done with

absorption . CO  absorption through the membrane is the combination of gas absorption and membrane

separation processes. This method perceived a remarkable perspective in the last decade for capturing CO  from

flue gas streams .

The absorption process for the large implementation of CCS is the perhaps amine based which may cause

equipment corrosion, solvent loss, and the production of volatile degradation constituents . The release of

nitramines and nitrosamines from the degradation of amine emissions can cause potential damage to human

health . Kozak et al.  presented a chilled-ammonia process (CAP) to capture CO  from flue gases produced

by different industries. They suggested that this process required low energy for the regeneration of CO  at

increased pressure and temperature, reducing the downstream compression, and is more environmentally friendly

than the amine processes. Furthermore, the capacity of solvents in absorption was found to be better at lower

temperatures, which necessitates the cooling of the solvent before the process and reducing the efficiency of the

process . Although absorption is the utmost developed CO  separation process due to its high efficiency and low

cost, it has certain environmental drawbacks due to the disposal of the absorbent after use .

2.2. Adsorption

Burning fossil fuels has led to the inexorable emission of greenhouse gases (GHG) and responsible for global

warming. Carbon dioxide escape can be prevented by capturing it before it gets released into the environment.

One such method that has been gaining popularity is the adsorption of CO  on adsorbent material at high

temperatures. CO  adsorption at high temperatures is a significant CO  separation method. Adsorption is a

physical process in which a solid sorbent is used to fix the CO  onto its surface. The adsorption process reduces

energy consumption and cost during CO  separation. Adsorbents can be used to capture single or multilayer gases

depending on the absorbent’s temperature, pore size, surface force, and pressure . The process employs

an adsorbent with a nanoporous surface to precisely adsorb CO  from the flue gas. Regeneration of the adsorbent

is done by creating a vacuum environment around the adsorbent or by providing heat . Generally used

adsorbent materials are molecular sieves, zeolites, activated carbon, calcium oxides, lithium zirconate, and hydro-

calcites . Table 1 enlists different physical and chemical adsorbents used in the postcombustion capture of CO .

Table 1. Chemical and physical adsorbents efficiency for postcombustion CO  .
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Adsorption is broadly categorized into chemical and physical adsorption processes. Chemical adsorption or

‘chemisorption’ is driven by chemical reactions at the contact surface. Metal salts and metal oxides are compounds

that constitute most chemical adsorbents. ‘Physiosorption’ or physical adsorption does not affect the chemical

structure of the adsorbent during adsorption. Inorganic porous materials such as zeolites, hydrotalcite, and

activated carbons (AC) are widely used physical adsorbents . Activated carbon is an economical

material with a large surface area and flexible pore structure when treated with activating agents. However,

effective CO  separation through AC is possible when the AC possesses weak binding energy with carbon dioxide

. Zeolites are hydrophilic, yet strong CO  adsorption agents. However, upon interaction with water, the strength

of the links between the interconnected substances reduces, decreasing the adsorption capability of the zeolites.

Applying metal–organic frameworks (MOFs) as adsorbents is a new approach. Metal ions or ion clusters are the

essential components of MOFs, amalgamated by organic linkers and bridging agents to form stable coordination

bonds. MOFs have advantages such as ease of synthesis and design with large porosity and modified pore

features. Silica, a non-carbonaceous material, has a large surface area, small pore size, and high mechanical

stability. Materials made of mesoporous silica use amine-based compounds to trap CO  . An effective

Sorbent Operating Pressure
(kPa)

Operating
Temperature (K)

CO  Capture
Capacity (mol CO /kg

Sorbent)

Mesoporous (MgO) 101 298 1.8

CaO nanopods 101 873 17.5

CaO derived from nano-
CaCO  

101 923 16.7

CaO-MgAl O
(spinel nanoparticles) 

101 923 9.1

Nano CaO/Al O  101 923 6.0

Lithium–Silicate - 993 8.18

CaO 100 873 17.3

PHYSICAL ADSORBENTS

Activated Carbon 110 303 1.58

NiO-ACs 101 298 2.227

Na-Y 101.32 273 4.9

NaKA 101.32 373 3.88

MWNT 101 303 1.7

CNT at (Cu (btc) ) 1818 298 13.52

MOF-177 4545 298 33.5

Pd-GNP Nanocomposite 1111 298 4.5
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2.
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4.

adsorbent should have the following properties: (i) good mechanical strength, (ii) high sorption kinetics, (iii) high

selectivity, and (iv) stable adsorption capacity .

The various pathways for carrying out the adsorption process are :

Pressure swing adsorption (PSA);

Temperature swing adsorption (TSA);

Electrical swing adsorption (ESA);

Vacuum Swing Adsorption (VSA).

The recovery of CO  captured during the adsorption process through processes such as pressure-temperature

swing adsorption (PTSA), vacuum swing adsorption (VSA), pressure swing adsorption (PSA), and temperature

swing adsorption (TSA) processes where PSA and TSA are the most widely used techniques. PSA adsorbs CO

onto a solid adsorbent surface at fluctuating pressures between maximum and minimum permissible pressure

limits. TSA is the process of CO  recovery through variations of temperature using hot air or steam. The PSA

method is favorably implemented in industrial applications due to its high recovery efficiency (85%) and lower

application cost than TSA. However, TSA is observed to be 95% effective in recovering CO  from adsorbed

surfaces, although it has a longer regeneration time than PSA. The requirement of high temperature during TSA

and high energy during PSA methods are the most significant drawbacks of these two methods . Yong et

al.  reviewed the various adsorbents at high temperatures. They studied material from carbon-based adsorbents

with high adsorption capacity for CO  separation at surrounding temperature and pressure to other agents such as

zeolites, metal oxide sorbents, and hydrotalcite-like compounds (HTlcs). It is of the utmost importance to

understand that the choice of adsorbents depends on the operating conditions of the process. MgAl O , CaO– and

nano CaO/Al O  are the most effective chemical adsorbents. The regeneration of chemical adsorbents is complex,

even though they have high adsorption capacity and selectivity . 
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