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Osteosarcoma (OS) is a malignancy that is becoming increasingly common in adolescents. OS stem cells (OSCs) form a

dynamic subset of OS cells that are responsible for malignant progression and chemoradiotherapy resistance. The unique

properties of OSCs, including self-renewal, multilineage differentiation and metastatic potential, 149 depend closely on

their tumor microenvironment.
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1. Introduction

Osteosarcoma (OS) is a malignancy that most commonly occurs in children and adolescents and is the second highest

cause of cancer-related mortality in these groups . There has been a rise in the annual incidence rate of OS to three

cases per million individuals . The majority of OS cases arises in the metaphyseal regions adjacent to the physis,

including the distal femur, proximal tibia and the proximal humerus, with a strong capacity for proliferation . Over the

past 30 years, the treatment of OS has improved little, such that surgery accompanied with chemoradiotherapy remain as

the main method of treatment . Although novel clinical strategies such as gene editing, individualized treatment and

novel molecular-targeted therapies, e.g., angiogenesis inhibitors, tyrosine kinase inhibitors and monoclonal antibodies,

have all been deployed against OS, the outcomes for patients are poor, particularly those with more aggressive forms of

the cancers . Therefore, novel treatment strategies are in demand in clinical practice. In addition, the molecular

mechanism underlying tumorigenesis and malignant metastasis needs to be studied in detail.

Based on the present research, OS is speculated to have two main origins, bone mesenchymal stem cells (BMSCs) and

osteoblasts . p53 as a classic cancer suppressor gene plays a key role in OS progression. The deficiency of p53 is

an important reason leading to primary OS. In addition, retinoblastoma gene (Rb), cyclin dependent kinase inhibitor 2

(CDKN2), KRAS and c-Met also participate in the regulation of OS progression . Within cancer tissues, there

exist several dynamic subsets of cancer cells considered to be cancer stem cells (CSCs) or stem cell-like cancer cells 

. CSCs have been frequently reported to exhibit stem cell properties and capabilities of long-term clonal proliferation,

tumorigenicity, facilitating metastasis and promoting resistance to chemotherapy and radiotherapy . Therefore,

exploring the origins of cancer initiation and metastasis will likely facilitate the development of future therapies. In 1994,

Lapidot et.al first reported that, in human acute myeloid leukemia, a rare population of CSCs exists . Subsequently, an

accumulating number of studies have also reported the existence of CSCs in other solid tumors, including prostate,

glioblastoma, hepatoma, breast cancer and OS . In fact, all types of malignant tumors consist of different

subpopulations of tumor cells, leading to high degrees of heterogeneity.

The niche in which CSCs reside is the tumor microenvironment, where they co-exist with adjacent supporting cells, micro-

vessels and the extracellular matrix . In addition, the tumor microenvironment can contain soluble factors, such as

chemokines and cytokines, whilst being under the influence of various mechanical factors, including matrix stiffness, solid

stress and fluid stress . In the OS microenvironment, OS stem cells (OSCs) are contained in a specialized niche that

contains a unique bone microenvironment, which consists of various types of bone cells, such as osteoblasts or

osteoclasts. OSCs are similar to other CSCs, in that they account for a proportion of cancer cells with tumorigenic and

self-renewal capabilities. The existence of OSCs was first confirmed by Gibbs et al., who found that when primary human

OS cells or the OS cell line MG63 were suspended in a serum-free medium with defined growth factors, 0.1% of the cells

could form spheres with self-renewal capacity . Subsequently, a series of studies have proven

the existence of OSCs, in addition to revealing the phenotype and possible marker profile of OSCs. The recent studies on

possible OSC markers and phenotypes (Table 1).

Table 1. Putative OSC markers and phenotypes.
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Marker Cell Origin Phenotype

CD133
Saos-2, MG-63, U2-OS,

MNNG/HOS, 143B, HOS, Human
primary cells

High stem cells gene expression, sphere formation, side
population, increased cell proliferation .

CD117/Stro-1 K7M2, KHOS/NP, MNNG/HOS,
318–1, P932, BCOS

High stem cells gene expression, sphere formation, drug
resistance, in vivo tumorigenicity and metastatic potential 

.

CD271 Human primary (FFPE),
MNNG/HOS, U2-OS, Saos-2

High stem cells gene expression, sphere formation, drug
resistance, in vivo tumorigenicity .

Aldehyde
dehydrogenase MG-63, OS99–1 Hu09, Saos-2

High stem cells gene expression, sphere formation, drug
resistance, increased cell proliferation .

Stem cells antigen-1 4 Murine osteosarcoma cell lines Sphere formation, in vivo tumorigenicity 

Fas apoptotic
inhibitory molecule 2 MNNG/HOS, U2-OS Sphere formation, drug resistance, in vivo tumorigenicity .

Side population
OS2000, KIKU, NY, Huo9,

HOS, U2OS, Saos-2, human
primary

High stem cells gene expression, Sphere formation, in vivo
tumorigenicity, self-renewal, apoptosis resistant .

Sphere formation MG-63, MNNG/HOS, human
primary

High stem cells gene expression, drug resistance, in vivo
tumorigenicity 

.

2. Role of the Tumor Microenvironment in Regulating OSC Stemness

OSCs can interact with their microenvironment through complex and dynamic processes, including variation of oxygen,

mechanical interactions, enzymatic modification of the extracellular matrix (ECM) structure and signaling cross-talk, all of

which can influence the progression and the dissemination of OS cells (Figure 1)

Figure 1. Role of microenvironment signaling in regulating OSC and non-OSC reversion. Complex pathways are

necessary for the maintenance of the homeostasis of the OSC population. All microenvironment components, including

cells (mesenchymal cells and immune cells) and non-cellular factors (hypoxia, cytokines and mechanical EVs), can

influence the dynamic transition between OSCs and non-OSCs. OSCs, osteosarcoma stem cells; miR, microRNA; HIF,

hypoxia-inducible factor; EVs, extracellular vesicles; EMT, epithelial-mesenchymal transition; BMP, bone morphogenetic

protein; TNF, tumor necrosis factor; TGF, transforming growth factor; TRA2B, transformer 2β homolog.

2.1. Hypoxia

Common hallmarks of solid tumors include intra-tumoral hypoxia, necrosis, acidic environments and disturbed

angiogenesis. Previous studies have shown that increased cancer cell stemness is associated with intra-tumoral hypoxia

. The previous study demonstrated that a hypoxia microenvironment could induce non-OSCs dedifferentiation

into OSCs by increasing the expression of TGF-β .
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During the process of tumor formation, excessive proliferation of cancer cells consumes large quantities of oxygen in the

microenvironment, resulting in the formation of a hypoxic zone in the central area of the tumor. In addition, aberrant

secretion of angiogenetic factors, including vascular endothelial growth factor A and fibroblast growth factor 2 (FGF2),

result in malformation and disorder in the neovascularization system . This in turn causes the loss of oxygen supply,

further aggravating hypoxia in the cancer tissue .

This hypoxic microenvironment induces the expression of hypoxia-inducible factor-1 (HIF-1), a vital member of the HIF

family. By contrast, in the presence of oxygen, HIF-1 undergoes degradation by the von Hippel-Lindau protein, a tumor

suppressor protein . HIF-1 is a heterodimer that is ubiquitously expressed in human and mouse tissues.

HIF-1 consists of two subunits, the hypoxia-inducible, oxygen-dependent subunit HIF-1α and the constitutively-expressed

oxygen-independent subunit HIF-1β . It is only when the oxygen concentration reaches <5% (such as when the

volume of the tumor has grown to >300 mm ) that HIF-1α can exist stably. Activity of HIF-1 provides cancer cells with the

ability to adapt to hypoxia and is closely associated with tumor metabolism, differentiation, angiogenesis, cell proliferation,

metastasis and multidrug resistance. Of note, several studies have demonstrated that elevated expression of HIF-1α

promoted the dedifferentiation of cancer cells into CSCs, whereas hypoxia is directly associated with poorer prognoses in

patients with OS .

Numerous studies have demonstrated that hypoxia can promote the expression of the stem cell marker CD133 to

maintain stemness and drug resistance in the Saos-2 OS cell line . Lin et al. previously reported that hypoxia can

increase the expression of embryonic stem cell markers, including Oct3/4 and Nanog, in the MNNG/HOS OS cell line .

Zhang et al. showed that a hypoxic microenvironment stabilized HIF-1α in OS cells, such that HIF-1 promoted the

expression of microRNA (miR or miRNA)-210, which then induced and accelerated the dedifferentiation of OS cells into

OSCs . These observations aforementioned suggest that HIF-1 and

subsequent hypoxia signaling pathways can regulate the differentiation of CSCs and the dedifferentiation of non-stem

cells in tumors .

In addition to HIF, hypoxia can also cause integrin-linked kinase dysfunction, triggering CSCs formation . Hypoxia has

been previously found to promote breast cancer stemness by HIF-dependent and AlkB homolog 5-mediated N6-

methyladenosine (m6A)-demethylation of Nanog mRNA . Shi et al. used the evolutionary theory to identify the hypoxic

adaptation-associated gene YTH N6-methyladenosine RNA binding protein 1 (YTHDF1). As a member of the N6-

methyladenosine (m6A)-modified RNA-binding protein family, YTHDF1 may interplay with other m6A modifiers and serve

a pivotal role in the self-renewal and differentiation of stem cells . Under hypoxia, AKT will accumulate in the

mitochondria of tumor cells, whereby 3-phosphoinositide-dependent protein kinase 1 is phosphorylated at special sites.

This pathway shifts the tumor metabolic program to glycolysis, which antagonizes apoptosis and autophagy and inhibits

oxidative stress. This in turn maintains the survival and proliferation capabilities of tumor cells, as evidenced by the

sphere-forming ability of cells in 3D cultures under severe hypoxia .

These aforementioned findings suggest that hypoxia may contribute to the creation of a microenvironment rich in tumor

stem cells, where this unique hypoxic microenvironment may provide essential cellular interactions and environmental

signals for the maintenance of CSCs . By contrast, the hypoxia microenvironment can also

regulate non-CSC dedifferentiation by regulating the activities of other pathways, including epithelial-mesenchymal

transition (EMT), metabolic reprogramming, DNA hypermethylation and apoptotic resistance. Additionally, the hypoxic

microenvironment can mediate the resistance of CSCs against drugs through drug transporters . The majority of CSCs

express the ATP-binding cassette (ABC) family of membrane transporters at high levels, including multidrug resistance

gene 1, breast cancer resistance protein and multidrug resistance-associated protein. These proteins can transport

metabolites, drugs and other substances, allowing CSCs to become highly resistant to chemotherapy. The relationship

between hypoxia and ABC proteins was previously documented to have a strong association with mediating tumor drug

resistance .

In conclusion, the hypoxic microenvironment with the activation of hypoxic signaling can serve key roles in the

dedifferentiation of OS cells into OSCs. Therefore, it is important to study the molecular mechanism underlying OS

dedifferentiation, which is expected to hold important clinical significance for improving the efficacy of therapeutic

strategies. However, the molecular mechanism of how exactly the hypoxic microenvironment can regulate OSC

physiology biology requires additional experimental evidence for validation. In particular, HIF-1 is a key molecule of the

hypoxia signaling pathway, the downstream molecules of which are expected to become important markers and potential

molecular targets of OSCs.
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2.2. Biomechanical Force

Under physiological conditions, most if not all organisms experience complex biomechanical forces, including shear

stress, matrix stiffness, tension and compression pressure . Biomechanical forces experienced by solid

tumors have different profiles compare with those in the surrounding or healthy tissue . Throughout the process of

cancer development, excessive cell proliferation will lead to the abnormal development of the biomechanical

microenvironment, including solid stress, increased matrix stiffness (decrease in OS due to osteolysis) and abnormal

interstitial fluid pressure .

These complex mechanical systems are essential for the maintenance of the homeostasis of the CSC population. Indeed,

previous studies have demonstrated that non-CSCs can be transformed into CSCs by receiving mechanical signals from

the surrounding microenvironment, such as increased matrix stiffness  and/or fluid shear stress . In

OS, soft substrate (7 kPa) has been reported to preserve OS stemness, mainly through miR-29b/Spin 1-dependent

signaling. Manipulation of cancer niche stiffness and miR-29b expression may therefore be potentially novel drug targets

in OS . Previous studies have shown that EMT can promote the progression and invasion of tumors . EMT have

been observed to serve as a direct link between non-CSCs and the gain of CSC properties . Matrix stiffness in the

tumor microenvironment can actively regulate EMT and migration of OS cells through cytoskeletal remodeling and the

translocation of myocardin related transcription factor A, which may contribute to cancer progression . Although the

aforementioned studies revealed that mechanical factors are at least partially associated with the dynamic conversion

between non-CSCs and CSCs, further research into the association between mechanical signaling and OSC stemness is

warranted.

Mechanical receptors on the cell surface, such as integrins, CD44 and ion channels, can sense the changes in ECM and

activate key downstream molecules, including focal adhesion kinase, integrin-linked kinase, RhoA and yes-associated

protein. Several of the signals induce non-CSC reprogramming and transform them into CSCs by increasing the

expression of sex determining region Y-box 2 (Sox2), octamer-binding transcription factor (Oct)-4 and Nanog 

. CSCs and normal stem cells frequently share similar surface markers and signaling

pathways, which would restrict the design of treatment regimens . The abnormal mechanical system in OS

microenvironments, which rarely occur in the harmonious microenvironments of normal stem cells, may provide novel

insights for designing CSC-targeted treatment methods. As such, discovering the relationship between biomechanical

factors and CSCs will greatly enable the generation of novel research strategies to investigate the occurrence,

development, and recurrence of cancers.

2.3. Growth Factors

Growth factors are pivotal in maintaining the physiological behavior of healthy individuals. Cells in the tumor

microenvironment can secrete growth factors to regulate processes of tumor development . When OS arise in the

bone, OS cells secrete factors that direct osteoclast-mediated bone destruction. In addition, matrix-derived growth factors,

especially transforming growth factor β1 (TGF-β1), are released from bone matrix. In addition, OS cells can release TGF-

β1 directly, where increased TGF-β1 expression is associated with high-grade metastases of OS . TGF-β1 is a multi-

function cytokine that serves as a mediator in the tumor to facilitate further tumor expansion, metastasis and cytokine

production . Wang et.al previously reported that TGF-β1 can switch the OSC chemoresistance through the miR-

499a/SHKBP1 axis . In another study, TGF-β1 signaling and a hypoxic environment were found to induce the

transformation of non-OSCs into OSCs dynamically, which promoted the acquisition of chemoresistance, tumorigenicity,

neovasculo-genicity and metastatic potential. Furthermore, blocking the TGF-β1 signaling pathway was reported to inhibit

this switch from non-OSCs to OSCs, inhibit OSC self-renewal and suppress hypoxia-mediated dedifferentiation . In the

bone microenvironment, TGF-β1 signaling is responsible for OSC generation and critical to chemoresistance in vivo. In

addition to OS, TGF-β1 can also regulate the dynamic switching between stem cells and non-stem cells to influence the

progression of tumors from different tissue origins . In conclusion, TGF-β1 serves a key role in regulating the

dynamic plasticity of OSC, which can lead to non-stem cells adopting OSC characteristics to promote tumorigenesis and

chemoresistance, highlighting TGF-β1 as a potential therapeutic target.

Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and serve important roles in the activity of

various tissues. In OS, BMP-2 suppresses tumor growth by reducing the expression of oncogenes whilst promoting the

differentiation of OSCs . Histological examination and gene expression analysis of OS tissues revealed that fibrotic

remodeling of the tumor microenvironment favors tumorigenesis. Zhang et al. previously demonstrated that fibrotic

reprogramming in the lung induced by OSCs is critical for OS pulmonary metastasis, with FGF-FGF receptor 2 (FGFR2)

signaling being responsible for this important process . In OS, the tumor necrosis factor-α/miR-155 axis has been
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found to induce OSC transformation between non-OSCs and OSCs through the extracellular signal-regulated protein

kinase signaling pathway . Melatonin, one of the hormones secreted by the pineal gland of the brain, has been shown

to significantly inhibit sphere formation by OSCs through the key transcription factor Sox-9 . Although all of the

aforementioned growth factors have shown the potential to target OSCs, the underlying mechanism require further

exploration.
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