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The biomechanical properties of the bone marrow microenvironment emerge from a combination of interactions between

various extracellular matrix (ECM) structural proteins and soluble factors. Matrix stiffness directs stem cell fate, and both

bone marrow stromal and hematopoietic cells respond to biophysical cues. Within the bone marrow, the megakaryoblasts

and erythroblasts are thought to originate from a common progenitor, giving rise to fully mature magakaryocytes (the

platelet precursors) and erythrocytes. Erythroid and megakaryocytic progenitors sense and respond to the ECM through

cell surface adhesion receptors such as integrins and mechanosensitive ion channels. While hematopoietic stem

progenitor cells remain quiescent on stiffer ECM substrates, the maturation of the erythroid and megakaryocytic lineages

occurs on softer ECM substrates. This review surveys the major matrix structural proteins that contribute to the overall

biomechanical tone of the bone marrow, as well as key integrins and mechanosensitive ion channels identified as ECM

sensors in context of megakaryocytosis or erythropoiesis.
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1.  Introduction
1.1. Overview

The bone marrow (BM) is the predominate location for adult hematopoiesis—the process in which a population of

multipotent hematopoietic stem cells (HSCs) produce lineage-restricted progenitors that give rise to all the types of blood

cells. The BM microenvironment is complex and supports the proliferation and differentiation of hematopoietic stem

progenitor cells (HSPCs) through cues received from the extracellular matrix (ECM). The ECM is a non-cellular support

network composed of structural proteins and various soluble factors [1,2]. As the physical support structure for the

surrounding HSPCs, the ECM has a role in biological functions, such as adhesion, migration, apoptosis, proliferation, and

differentiation [3]. The composition of the ECM is derived from a mixture of collagens; laminins; fibronectin and fibrinogen;

and soluble proteins, such as cytokines, chemokines, and secreted enzymes. These various structural matrix proteins set

the elasticity and rigidity of the bone marrow that creates the biophysical state surrounding the cells [1–3]. The ability of a

cell to sense forces such as compression, tension, fluid shear stress, and hydrostatic pressure within the three-

dimensional environment is a conversed ability that all single celled organisms and complex multicellular eukaryotes

possess [3]. Characterizing the functional link from the biomechanical cues a cell receives to a biochemical response is

the process called mechanotransduction [3]. This review focuses on the biomechanical properties of the BM compartment

and how these properties influence the cell fate of the erythroid and megakaryocyte (MK) lineages through the process of

mechanotransduction.

1.2. Bone Marrow ECM Composition

BM stromal and hematopoietic progenitor cells have been demonstrated to be mechanically responsive to engineered

substrates and surrounding viscosity [4–8]. The rigidity of the BM is not uniform throughout, as there exists a large amount

of heterogeneity in the Young’s modulus ranging from 0.25 to 24.7 kPa [9]. Several key matrix structural proteins

contribute to the overall biomechanical tone of the bone marrow. The ECM is mainly made up of collagens, which include

both fibrillary collagen (collagen I, II, III, V, and XI) and non-fibrillary collagen [10]. Immunohistochemical analysis of bone

marrow revealed that collagen I and IV along with fibronectin are localized throughout the endosteum [11]. Multicolor

quantitative confocal imaging cytometry, a technique that has allowed for a three-dimensional map of the ECM

components, further confirmed that collagen I and fibronectin are pervasively localized throughout the entire bone marrow

[12]. Furthermore, collagen IV, laminin, and fibronectin are largely present in the BM parenchyma [12]. This agrees with

other sources that have also mapped type IV collagen, laminin, and fibronectin to the sinusoids [13]. The presence of

collagen throughout the bone marrow contributes to the overall stiffness of the ECM [1,10]. The increase in stiffness is



non-linear in response to increased deposition of collagen III mixed with collagen I [14,15]. Fibronectin, a glycoprotein,

modulates ECM stiffness by organizing collagen into fibrils [16]. A collagen matrix failed to develop in fibronectin-deficient

mouse fibroblasts that were cultured, but the addition of exogenous fibronectin reconstituted the collagen matrix [16].

The BM ECM is continuously subjected to remodeling by proteins such as matrix metalloproteinases (MMP), tissue

inhibitors of MMPs (TIMPs), and plasmins. MMPs are a family of zinc-dependent endopeptidases which are responsible

for the breakdown of the ECM, while TIMPs counterbalance the function of MMPs [17]. In patients with essential

thrombocythemia and polycythemia vera plasma levels of MMP-3 were decreased and plasma TIMP-1 was elevated [18].

These data suggest that altered BM ECM composition contributes to these disease states. Endosteal expression of TMIP-

3 promotes HSC regeneration and actively drives HSCs out of the quiescent state [19,20]. This is consistent with other

studies that demonstrate that ECM substrate stiffness that resembles the endosteal space promotes HSC proliferation [8].

Plasmin is a protein that breaks down ECM fibrin, fibronectin, and laminin, and activates MMPs [21]. Urokinase

plasminogen activator (uPA), which is broadly expressed by BM cells, actives plasmin [21–23]. Active plasmin is regulated

by plasminogen activator inhibitor 1 (PAI-1) and tissue plasminogen activator (tPA) [21]. In the BM the expressions of PAI-

1 and tPA offset one another functionally and are important for hematopoietic regeneration, particularly after BM

transplantation [24,25]. Inhibition of PAI-1 improved hematopoietic recovery in mice after myeloablation. Taken together,

the structural protein makeup of the BM ECM and the factors regulating these proteins are influential on the overall rigidity

of the BM.

1.3. Effect of BM Stiffness on Cell Differentiation

ECM stiffness is important to the determination of HSC fate and differentiation [4,8,26]. HSCs cultured on stiffer matrices

promoted the development of myeloid progenitors, while softer laminin surfaces increased the number of erythroid

precursors [8]. Rigidity influences BM stromal cell differentiation [27]. Osteogenic differentiation of BM-derived

mesenchymal stromal/stem cells (MSCs) is enhanced on stiffer substrate surfaces [27]. ECM stiffness modulates MK

development and platelet production. When BM progenitors were cultured in 3D methylcellulose hydrogels designed to

recapitulate the BM microenvironment (30-60 Pa), MKs had more demarcation membranes, higher ploidy, and produced

more platelets compared to liquid cultures or stiffer 3D cultures (300-600 Pa)[28]. This was further corroborated by

another study, wherein MKs were cultured on soft collagen-coated gels (300 Pa) or on stiffer gels (34 kPa) [29]. These

cultured MKs had higher ploidy on the softer gels regardless of collagen concentration [29]. In fact, matrix stiffness seems

to mediate MK differentiation and platelet production independent of the type of collagen. In an ex vivo model, cultured

MKs produced more platelets on softer matrices regardless of whether the matrix was composed of collagen I or collagen

IV [30,31]. β1 integrin was more highly activated on the softer matrix, and platelet formation on the softer silk was

mediated through the PI3K/Akt pathway [30].

2.  Integrins as ECM Sensors in the Context of Erythropoiesis

Integrins are heterodimeric type I transmembrane proteins composed of α and β subunits and serve as one of the major

cell adhesion receptors in the ECM. Integrins act as a transmembrane link between the ECM and the cytoskeleton. The

24 mammalian integrin receptors are made up of a combination of 18 α and 8 β subunits [32]. Each subunit has a single

transmembrane domain, a short cytoplasmic tail, and an extracellular domain that binds ligands such as collagen or

fibronectin. [32]. Integrins on the surface of blood cells and platelets are inactive in a bent confirmation, and activation is

triggered by variety of signaling molecules such as growth factors [32]. Integrin-ECM binding activates a multitude of

intracellular pathways involved in fundamental biological processes, such as cell survival and proliferation, cytoskeletal

organization, and cell mobility [32]. Knockout of integrin β1 in mice is lethal [33]. However, α2 integrin knockout mice are

viable and develop normally, but platelet aggregation in these mice is delayed [34]. Integrin α4 is required to maintain

normal hematopoiesis [35], and lack of α4 integrin disrupts T-cell and B-cell production, whereas monocyte and natural

killer cell production remains unaffected by α2 knockout [36]. Mutations in integrin β3 lead to the disorder Glanzmann’s

thrombasthenia, wherein platelets cannot bind fibrinogen and fail to aggregate [37]. ß3 mutations contribute to

cardiovascular disease and the development of atherosclerosis [37]. Integrins are essential for mechanosensing of the

ECM and related signaling.

Erythropoiesis, the process in which progenitors undergo terminal differentiation into mature circulating red blood cells

(RBCs), occurs in a specialize bone marrow structure called the erythroblastic island, which is characterized by a central

macrophage surrounded by committed erythroid progenitors. Integrins are crucial to this process as they not only facilitate

a connection to the surrounding ECM but mediate cell to cell contact between the central macrophage and erythroid

progenitors. The predominate integrins expressed on erythroid progenitors are VLA-4 (α4β1) and VLA-5 (α5β1); both are

fibronectin receptors [38]. While erythroid maturation is mediated considerably through growth factor signaling, principally

through erythropoietin (EPO), adhesion to extracellular fibronectin and laminin promotes erythroid development [8,38].



The developmental expression of α4 can be used as a helpful tool to identify erythroid cells at different maturation states,

as α4 expression decreases as the erythroid progenitors mature into terminally differentiated reticulocytes cells [39–41].

The decreased ability of erythroid cells to bind fibronectin correlates with the expression pattern of α4 during development;

with early human erythroid progenitors (CFU-E) adhering to fibronectin, the intermediate progenitor (proerythroblast) has

a diminished capability to bind to fibronectin, and terminal differentiated reticulocytes are unable to bind fibronectin [39].

This is necessary so that mature RBCs can exit the bone marrow and enter circulation. The effects of erythroid adhesion

to fibronectin through integrins are temporally distinct as early ex vivo fetal liver erythroid progenitors require stimulation

with erythropoietin (EPO), but fibronectin was found to be crucial for differentiation of late progenitors [38]. Erythroid

progenitors’ engagement with fibronectin can be perturbed with the use of monoclonal antibodies against VLA-5 [39].

Inhibiting VLA-4 engagement with fibronectin blocked erythroid development; however, blocking VLA-5 in the same

fashion did not have the same affect [42]. The roles of the two predominate fibronectin integrins on erythroid progenitors

are debated, as it has not always been clear from in vivo models what distinct functions these fibronectin-binding integrins

serve [43–45]. This raises the possibility that the stiffness of fibronectin used in the different studies could influence the

effect of these integrins on erythroid differentiation. Several integrin knockout mice were generated and administered

phenyl hydrazine which induces severe anemia and stress erythropoiesis. The integrin,β1, which partners with α4 or α5 is

required for splenic erythropoiesis under the stress, but bone marrow stress erythropoiesis produces progenitor cells that

are able to mobilize to the peripheral blood, although the late progenitors have maturation defects [45]. In the mouse

model wherein integrin α4 is deleted, the mice experience a delayed recovery of the erythroid progenitor population in

response to phenyl hydrazine and defective erythroid cells under both basal and stressed conditions [45]. When further

knockout mouse models were created in which the integrins α4 or α5 were selectively removed in the erythroid lineage

conditionally either early or late in erythroid development, only α4 was required for proper erythroid maturation [44].

Collectively, this work demonstrates the importance of adhesion to the ECM via integrins

3.  Integrins as ECM Sensors in the Context of Megakaryocytosis

MKs also conduct forces across the membrane through integrin attachment to ECM proteins. Since collagen has such a

large role in ECM biomechanical properties, it has been the focus of research for the understanding of MK development

and platelet formation [30,46,47]. MKs express two main receptors for collagen, integrin-α2β1 and glycoprotein VI [47];

however, MK expression of leukocyte-associated immunoglobulin-like 1 (LAIR1) and discoidin domain receptor (DDR1)

that also bind collagen have been described in the literature [48,49]. Early MK progenitors (CFU-MK) have a lower affinity

for adhering to collagen compared to later MK progenitors [50], which is interesting as integrin-α2β1 and glycoprotein VI

expression occurs early in MK development [50,51]. It has been established that collagen I inhibits proplatelet formation

(PPF) in order to prevent the release of immature platelets in the bone marrow, while collagen IV and laminin support PPF

in the sinusoids [52]. To date, collagen I, III, and IV localization to a specific compartment of the bone marrow is elusive;

MKs localize equally with collagen I and IV but more so with collagen IV within the vascular niche [51]. Studies utilizing

antibodies and knockout mice implicate the inhibitory effects of collagen I on MK PPF by the glycoprotein VI, although

there is a modest compensatory effect through integrin α2β1 [51]. In studies where ex vivo human HSPC were co-cultured

with human osteoblasts (hOST), MK maturation and PPF was inhibited [46]. This effect was mediated by the fibrillar

structure of collagen I and engagement through integrin α2β1 [46], and consequently activation of the Rho/Rock pathway

[53]. MKs cultured on N-acetylated collagen I, which decreased mechanical tension, produced more platelets compared to

unaltered collagen I [54]. This further supports the fact that the rigidity of the ECM in combination with the structural

proteins affects platelet biogenesis [30,31]. Unlike collagen I, collagen III and IV promote platelet formation via the

PI3K/Akt pathway [13,30]. Furthermore, primary MKs are able to self-regulate their immediate microenvironment by

secreting ECM components collagen IV; fibronectin; laminin [13]; and lysyl oxidase (LOX), a copper-dependent enzyme,

which controls ECM stiffness by regulating the cross-linking of collagen fibers [55]. Highly expressed in immature MKs

and down-regulated in MKs of higher ploidy [56], LOX inhibition lessens BM fibrosis in the GATA-1  and JAK2V671F

mouse models [56,57].

The ECM component fibronectin plays a pivotal role in MK biology as it is necessary for platelet production [58], and when

cultured CD34  cells stimulated with thrombopoietin (TPO) were grown on a fibronectin matrix, the number of CFU-MK

and percentage of CD41  cells were higher compared to liquid only cultures [59]. HSPC cultures on fibronectin resulted in

an increase in mouse HSC with an increase in MK output [13]. The major fibronectin binding integrins on MKs are VLA-4

(α4β1) and VLA-5 (α5β1), which are expressed throughout MK development [50,60]. HSC cultures produced more CFU-

MKs on fibronectin as stiffness increased [8]. Integrin function on MKs is necessary, as a pan-blockade of integrins

blocked TPO-stimulated growth; specifically neutralizing VLA-4 with monoclonal antibody blocked MK growth in TPO-

stimulated bone marrow cultures [61]. In the MK cell line CHRF-288, full MK differentiation, CD41 expression, adhesion,

size, polyploidy, and PPF were only achieved on cultures with fibronectin [58]. Integrins transmit mechanical signals via
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engagement with the ECM; these are relayed into the cells by activation of focal adhesion kinase (FAK) which

subsequently activates the RhoA/ROCK pathway [62]. Activation of the RhoA/Rock mobilizes the cytoskeleton in MKs by

phosphorylation of non-muscle myosin II (NMM-II) which is inhibitory to PPF [63]. Taken together, studies show that

outcomes of specific integrin binding/activation depend on the matrix as well.

4.  Mechanosensitive Ion Channels in the Erythroid Lineage

Mechanosensitive ion channels are pore forming channels that specialize in sensing physical sensations, such as force,

osmotic pressure, stretching, or shear stresss, and converting the stimuli into biochemical signals through the transfer of

ions across the cellular membrane [64]. There are multiple mechanosensitive channel types, such as transient receptor

potential cation channels, mechanosensitive potassium channels, and Piezo ion channels [64]. These channel families

differ in their structure, function, activation, and cation selectivity [64]. This review focuses on the mechanosensitive ion

channels in the TRP and Piezo families, as relatively few studies to date address mechanosensitive ion channels in the

context of erythroid and MK biology. In the family of mechanically activated channels known as the transient receptor

potential cation channel subfamily, member 3 and 6 (TRPC3 and TRPC6) are Ca  permeable non-selective ion channels

that are downstream of PLC and DAG [65]. Both TRPC3 and TRPC6 are agonist activated [65,66]. Transient receptor

potential vanilloid 4 (TRPV4) also is a Ca  permeable non-selection ion channel that functions in the capacity of an

osmosensor, thermosensor, and like TRPC3 and TRPC6 can be activated by agonist stimulation [67–72]. The Piezo

channel family has no sequence homology to any other mechanosensitive channel family [73]. The Piezo family of

proteins was identified by neuroscientist Ardem Patapoutian who named two related ion channel proteins Piezo1 and

Piezo2 – from the Greek word piezein, meaning squeeze/press. Piezo family channels activate in response to indentation

and stress [64], and then the influx of Ca  into the cell triggers a series of signaling events that propagate the mechanical

signal.

Two members of the family of mechanically activated channels, transient receptor potential cation channel subfamily,

TRPC3 and TRPC6, are present on the surfaces of human erythroid progenitors and mature RBCs, allowing the passage

of calcium (Ca ) through the membrane [74–76]. Erythroid cells and specifically RBCs are very sensitive to small

changes in intracellular ion concentrations. Stimulation of erythroid TRPC3 increased intracellular Ca  in an EPO

dependent manner [76,77] and is negatively modulated by TRPC6 [77]. TRPC3 mobilizes to the plasma membrane after

EPO stimulation [74] possibly through TRPC3 interaction with proteins involved in the cytoskeleton [78,79]. The function of

TRPC6 is unaffected by EPO stimulation, and in the mature RBC activation may be dependent on osmotic changes [75].

TRPC6 may mediate eryptosis a mechanism to clear damaged RBCs [75]. Recent reports have contested whether the

family of TRP channels can directly conduct mechanical sensation, and have suggested that activation of these channels

is downstream of other mechanosensitive sensors [80].

Autosomal dominant hemolytic anemia hereditary xerocytosis is linked to gain of function mutations in the

mechanosensitive ion channel Piezo1 [81,82]. Piezo1 is a broadly expressed mechanosensitive ion channel responsible

for transforming mechanical stimuli such as touch, pressure, shear stress, and membrane tension into a biochemical

signal through the transmembrane flow of Ca  across a number of cell types that include vascular epithelial and neuronal

tissue. [73,83]. In RBCs, Piezo1 transmit stimuli related to membrane stretch, [84] distortion, [85], and curvature [86]. The

Piezo1 channel is non-selectively pharmacologically blocked by the spider venom inhibitor, GsMTx4 [87]. GsMTx4

intercalates into membrane lipids and alters membrane fluidity, thereby altering membrane tension and altering Piezo1

activation kinetics [87]. Activation of Piezo1 either by stretch or stimulation by Yoda-1, a Piezo1 specific agonist [88],

results in robust Ca  entry [89,90] and eventual dehydration of RBCs which is similar to the phenotype seen in RBCs with

gain of function Piezo1 mutations [90]. Mechanistically, the increased intracellular Ca  opens the Gardos channel

(KCa3.1), which controls RBC volume [91]. Gardos channel mutations result in hereditary xerocytosis as well [92,93].

Piezo1 expression is up-regulated during the erythroid differentiation of cultured CD34  HSPCs [82]. Yoda-1 activation of

Piezo1 in ex vivo cultures alters the dynamics of normal erythroid differentiation by decreasing glycophorin A by 75%,

altering the GATA2/GATA1 ratio, and reducing hemoglobinization [94]. Similar dynamics were observed in erythroid cells

cultured from CD34  HSPCs obtained from individuals with gain of function Piezo1 mutations [94]. These studies shed

light on the functional characterization of the Piezo1 channel, where on the erythroid progenitor it functions to influence

differentiation, but Piezo1 functions on the mature RBC to control cell volume.

5.  Mechanosensitive Ion Channels in the Megakaryocyte Lineage

As discussed above, both the erythroid and megakaryocytic lineages detect and react to mechanical forces through

integrins as well as mechanosensitive ion channels. Extracellular Ca plays an important role in MK ability to sense the

ECM, as MKs and/or MK cell lines (Meg-01) have been observed to express the mechanosensitive ion channels
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[30,95,96]. The mechanosensitive receptor TRPC6 has been linked to Ca influx and platelet function [97–99]. Treatment

of proliferating MK with 5 μM SKF96365, a TRPC6 specific inhibitor, reduced MK numbers by 50% [95]. Although linked to

MK proliferation in vitro, knockout of TRPC6 in mice had no effect on platelet function either in vitro or in vivo [100]. The

platelet response to activating agonists and aggregation studies conducted in vitro with platelets obtained from TRPC6 -/-

mice were not significantly different than those of wild-type mice [100]. Thrombus formation after mechanical injury of the

abdominal aorta was also unaffected, as were tail-bleed times for wild-type and knockout mice [100]. In MKs, the

mechanosensitive ion channel, TRPV4, senses soft ECM which increases the influx of intracellular Ca , which leads to

the activation of β1-integrin and Akt phosphorylation and increases platelet production [30]. Platelet production decreased

with inhibition of TRPV4 on MKs cultured on collagen IV, and moreover, mice treated with LOX inhibitor (BAPN) had softer

ECMs, higher platelet counts, and an increase in TRVP4 activity [30].

Piezo1 expression was found on platelets and the MK cell line, Meg-01 [96]. Piezo1 was activated in platelets and Meg-01

by fluid shear stress, and inhibition of Piezo1 with GsMTx-4 abrogated the Ca influx [96]. Yoda-1 stimulation of platelets

increased Ca influx by over 170% [96]. In vitro thrombus formation of whole blood was reduced by GsMTx-4; however,

platelet aggregation was unaffected [96]. As noted above, the role of Piezo1 function has been well-characterized in RBC

physiology; Piezo1 activation by Yoda-1 alters erythroid differentiation kinetics [86,90,94]. Since erythrocytes and MKs

share a common progenitor, Piezo1 may contribute to MK maturation, a role that needs to be clarified. Taken together

these studies demonstrate that mechanosensitive ion channels present on the surface of MKs sense matrix rigidity and

that the biomechanical tone of the ECM contributes the dynamics of MK maturation and platelet production.

6.  Discussion

Both MKs and erythrocytes emerge from a common progenitor. Differential expression of integrins and ion channel

mechanosensors in the fully differentiated cells of these lineages, as well as the ECM composition, impact their properties

and courses of development, as further summarized in Table 1. In erythroid progenitors, adhesion to extracellular

fibronectin by the integrins VLA-4 and VLA-5 plays a role in the dynamics of RBC production. Engagement of integrin-

α2β1 and/or glycoprotein VI with collagen I compared to collagen IV influences proplatelet formation by MKs.

MK progenitors require fibronectin for platelet formation which is mediated through integrins VLA-4 and VLA-5. The

mechanosensitive ion channels of the family of mechanically activated channels known as the transient receptor potential

channels of the canonical type, TRPC3 and TRPC6, are present on the surfaces of erythroid progenitors and mature

RBCs and mediate EPO stimulated transmembrane Ca  influx. Erythroid expression of the mechanosensitive ion

channel, Piezo1, plays a role erythroid progenitor proliferation and regulates RBC volume in response mechanical

pressure. The functions of mechanosensitive ion channels, TRPC6, TRPV4, and Piezo1, on MKs and platelet biology, are

starting to be elucidated. Taken together, the effects of bone marrow components and the biophysical state of the bone

contribute to erythroid and MK lineage development, and a greater understanding of these interactions could shed more

light on mechanisms of underlying diseases.

Table 1. Erythroid and megakaryocyte mechanosensors.

Mechanosensor Comments Reference

VLA-4 (α4β1)

Expression and attachment to fibronectin decreases as erythroid progenitors

differentiate

Delay in recovery from stress erythropoiesis and defective erythroid cells found in α4

knockout mice

Enhances TPO stimulated MK growth

[39]

 

[45]

 

[61]

VLA-5 (α5β1) Redundant role in erythroid development [43,44]

β1-integrin Required for stress induced splenic erythropoiesis [45]
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α2β1
Engagement with collagen I inhibits Mk maturation and PPF

Binding to collagen IV promotes MK maturation and PPF

[46]

[30]

Glycoprotein VI Signals the inhibitory effect of collagen I on PPF in MKs [51]

TRPC3 EPO dependent increase in Ca  influx in erythroid cells [74,76,77]

TRPC6

Negatively modulates TRPC3 activity in erythroid cell

Potentially mediates eryptosis

Ca2+ entry into platelet; platelet activation

Inhibition decreased the number of MKs in vitro

[77]

[75]

[97–99]

[95]

TRPV4
Increases MK maturation and platelet formation on soft matrix, activate β1-integrin

and PI3K/Akt pathway in MKs
[30]

Piezo1

 

Gain of function mutations cause Hereditary Xerocytosis

Modulates RBC volume

Role in erythroid differentiation; activation delays maturation

Activated on platelets in response to shear stress; inhibition reduced in vitro

thrombus formation

[81,82]

[89,90]

[94]

[96]
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