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The term calcareous tufa, or freshwater travertine, is widely used in the scientific literature to describe carbonate

deposits precipitated from cool groundwaters of meteoric origin enriched in CO  (carbon dioxide) by percolating

through organic soils.
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1. Calcareous Tufa

The term calcareous tufa, or freshwater travertine, is widely used in the scientific literature to describe carbonate

deposits precipitated from cool groundwaters of meteoric origin enriched in CO  (carbon dioxide) by percolating

through organic soils and, therefore, capable of attacking CaCO  (calcium carbonate) in limestone aquifers and

dissolving it as Ca (HCO )  (calcium bicarbonate) according to the equation: 

CaCO  + CO  + H O ↔ Ca + (HCO )

Calcareous tufa deposits form from the degassing of carbon dioxide and related shifting of the above equation

induced by flowing water turbulence and the photosynthetic process by vegetal organisms typical of aquatic

environments such as bacteria, blue-green algae, and mosses whose remnants are usually present in the deposit

structure  together with fossil fauna such as ostracods and mollusk shells . Similar in origin to calcareous

tufa are cave speleothems . Carbonate deposits precipitated from geothermal waters highly enriched with

concentrations of CO  are called thermogene travertines  or, more simply, travertines . Calcareous tufa

deposition has taken place in various environmental conditions since the earliest geological times , even though

most deposits are referred to the Middle-Upper Pleistocene and Holocene (  and references therein).

2. Calcareous Tufa Deposition/Erosion and the
CaCO ·CO ·H O System

The dissolution rate of CaCO  in water is very low . However, if the solution includes some CO , CaCO  is easily

dissolved as Ca(HCO ) . The dissolved free carbon dioxide (not combined in the previous equation) is called

equilibrium CO  : With concentrations of dissolved CO  lower than the equilibrium values, precipitation of

CaCO  will occur, while with higher concentrations, further dissolution of CaCO3 will be possible. The carbon

dioxide concentration above the equilibrium value is called independent CO  .
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The solubility of CaCO  in water directly depends on the partial pressure of CO  in the surrounding atmosphere 

. It is very low in the open air but strongly increases in soils, where the partial pressure of CO  produced by

biological processes and the decay of organic matter can attain values up to 1000 times higher than in the

atmosphere . The temperature also controls the CO  solubility: Water at 0 °C dissolves CO  about three times

more than at 30 °C . Then, the water reaches the phreatic zone where the only sources of additional CO , apart

from a possible endogenous supply, is from the oxidation of minor amounts of transported organic matter or

bacterial activity . However, in such conditions, the total amount of CO  may be considered practically constant,

but the relative amounts of free CO  (equilibrium plus independent CO ) and combined CO  (to form CaCO  and

Ca(HCO )  may change with variations of pressure and temperature. In a closed system, free CO  may also be

derived from the mixture of solutions saturated with different concentrations of CaCO  .

Several factors may cause CaCO  precipitation : Lower partial pressure of CO  at the groundwater emergence,

increasing groundwater temperature at the emergence, consumption of CO  by aquatic plants, loss of dissolved

CO  (degassing) induced by turbulence and pulverization of stream waters at waterfalls, breaks, and roughness

reaches of the river profile, even at a great distance from the spring .

3. Types of Calcareous Tufa

Calcareous tufa may be divided into two main groups: autochthonous tufa, deriving from in situ encrusted

organisms, and allochthonous tufa, consisting of phytoclasts (encrusted fragments of plants) arenitic (microdetrital

facies) and ruditic (macrodetrital facies) in size . Based on the sedimentary facies, autochthonous

tufa may be distinguished:

stromatolithic tufa, including sequences of laminae (usually 1–10 mm in thickness) formed during short

depositional intervals characterized by the presence of particular encrusting microorganisms (Figure 1);

microhermal tufa, consisting of strata lens whose fabric reveals the structure of constructing organisms (usually

mosses or algae) encrusted in growth position;

phytohermal tufa, exhibiting a layered/lensoid organization similar to microhermal tufa but larger and composed

of large, encrusted plants, usually mosses, reeds, and other phanerogams (Figure 2 and Figure 3).
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Figure 1. Stratified stromatolithic tufa in the upper basin of the Esino River (Marche, Italy).

Figure 2. Plant remains encrusted in phytohermal tufa at the Romanatt dam (Tigray, Ethiopia).
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Figure 3. Phytohermal tufa at Romanatt Dam (Tigray, Ethiopia).

Allochthonous tufa deposits have a typical clastic texture with fragments of incrustations on vegetal organisms

sometimes providing information (e.g., clast orientation, imbrication, etc.) about their transporting flow. Fragments

with an irregularly laminated cortex of calcium carbonate, often characterized by a spheroidal to oblate shape and

usually referred to as oncoids , are common components of allochthonous tufa deposited in streams, rivers, and

lakes. Pedley  attributes the spheroid shapes of grains to high competence flow, the elongated shapes to slow

flow, and the irregular shapes to calm waters.

Clastic fragments cemented by calcareous tufa are sometimes found inside terraced alluvial or slope deposits.

They form mainly in the first stages of tufa deposition .

Following Choquette and Pray , the porosity of calcareous tufa limestone may be distinguished into non-fabric

porosity (produced by fracturing, karstic dissolution, and burrowing invertebrates) and fabric porosity.

Depending upon the cohesion between the constituting crystals, calcareous tufa deposits range from soft and

chalky to dense and highly indurated .

Tufa deposits are affected by meteoric diagenesis soon after deposition when exposed at the surface and by burial

diagenesis when overlain by more recent thick sediments .
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The principal changes caused by meteoric diagenesis are related to the dissolution/precipitation of calcium

carbonate (void filling, cementation) induced by percolating rainwater or groundwater; other diagenetic effects are

recrystallization, microbial micritization, bioturbation, oxidation of organic matter and sparmicritization, a term

introduced by Kahle  to describe the etching action of microorganisms at or near the tufa surface . Burial

diagenetic effects resulting from increased lithostatic and hydrostatic pressure, heating, and the ingress of mineral-

enriched solutions include compaction and porosity reduction resulting from further cementation, dissolution of the

original fabric, sometimes with replacement by other minerals, and reactions between the original carbonate

component and accessory minerals .

The original differences in porosity combined with those due to diagenesis make the permeability of tufa deposits

extremely variable.

4. Calcareous Tufa Deposits and Landforms

The deposition of calcareous tufa may give rise to construction landforms such as small mounds at springs and

dams across the riverbeds or coatings of steep slopes, rough river beds, or swamp/lake bottoms generally lacking

a recognizable shape . These features are geologically not durable as the construction process can be

interrupted, and landforms can be destroyed, in whole or in part, by erosion . Bedding within the deposit, where

present, is usually inclined and undulated and rarely horizontal; thin laminations resulting from daily/seasonal

variations are often recognizable .

Slope deposits essentially consist of wedge-shaped, layered bodies of microhermal tufa locally passing to

stromatolithic tufa with minor intercalations of phytoclastic tufa. Calcareous tufa systems may develop either along

slopes forming wedge-shaped sedimentary bodies with the thickest accumulation downstream and transforming

the original water flow into a system of hanging channels, low barrages, ponds, and terraces, or across rivers

giving rise to dams with pools or larger basins on their backside .

Dams are the showiest construction bodies of calcareous tufa (Figure 4). They may reach heights up to several

tens of meters in correspondence with breaks or obstructions of riverbeds that reduce erosion by flowing water,

thus allowing CaCO  precipitation . These features mainly consist of massive phytohermal tufa

encrusted on a skeleton made of remnants of vegetal organisms. In addition to growing upward, the aggradation of

tufa progrades onward, forming sub-vertical layers unconformably covering the earlier deposits, including those of

the basin down valley (Figure 4) . On the backside of dams, water basins form (ranging in size from small

pools to vast lacustrine basins) whose bottom hosts tufa sands (deriving from dismantling tufa deposits upstream),

phytoclastic tufa, and stromatolithic tufa, interspersed with clayey sediments and peaty layers (Figure 5) 
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Figure 4. The imposing Holocene tufa dam of May Makden in Tigray (northern Ethiopian Highlands).

Figure 5. The backfill deposits of the May Makden tufa dam: a complex sequence of stromatolithic tufa levels,

lacustrine clay, peat, alluvial gravels, and buried soils testifying repeated aggradation/erosion phases.
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Dams and backside pools usually follow one another along the watercourse forming characteristic depositional

systems (Figure 6) .

Figure 6. Evolutionary scheme (from initial phase A to final phase C) of tufa dams and backside pools along a

watercourse: 1. phytohermal tufa; 2. stromatolithic and phytoclastic tufa.

The growth of tufa dams occurs where the deposition rate of calcium carbonate from water is high enough to

balance the streamflow erosion .

In correspondence with significantly high steps in the riverbed profile, dams often fail to grow due to the erosion

exerted by rapid water flow, and the deposition of tufa mainly progresses downstream from the tufa dam, giving

rise to a “cascade tufa” deposits (Figure 7) .
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Figure 7. Cascade tufa overlying Mesozoic limestone in the upper Esino River basin (Central Italy).

5. Factors Controlling Calcareous Tufa Deposition/Erosion

There is general agreement in referring the development of calcareous tufa to climatic causes .

Warm climates are believed to favor calcareous tufa formation due to higher concentrations of biogenic CO  in

soils  enhancing the dissolution rates of CaCO   and increasing photosynthetic

activity by aquatic plants . Conversely, cold climates are considered less favorable because of the

reduced biological activity of soils and the lesser development of aquatic plants .

Humid climates are generally considered favorable for tufa deposition by allowing abundant water infiltration and

emergence, enhancing the development of vegetation covers and related biogenic processes in the soils, and

promoting the growth of aquatic plants. This is contrary to dry climates where there is a scarcity of rainwater and a

consequent general reduction in water circulating in the ground and discharging at springs. However, delayed

responses to climate aridification of deep aquifers reached by river incision may locally result in tufa deposition,

even during dry periods . 

An explanatory model for the alternating periods of tufa deposition/erosion during geological times refers to the

variations of thermal gradient induced in the bedrock by significant climate changes [56

(https://www.mdpi.com/2076-3417/13/7/4410#B49- applsci-13-04410)]. Due to the low thermal conductivity of

[6][8][39][40][41]

2

[6][8][14][39][40][41][42][43][44][45]
3

[12]

[1][8][25][46]

[6][45]

[47][48]



Calcareous Tufa | Encyclopedia.pub

https://encyclopedia.pub/entry/44047 9/12

bedrock [57], major climatic changes to warmer conditions, such as the rapid increase in air temperature at the

Late Pleistocene-Holocene transition, induce significant thermal contrasts between the surface and the ground and

reverse thermal gradients in the deep limestone aquifers. With climate warming, the infiltration water, made highly

acidic when crossing the soil due to the elevated partial pressure of biogenic CO  present therein, percolating

through the progressively colder levels of the aquifer, causes relevant dissolution of CaCO  [14 ], higher than in

normal conditions. At the emergence, because of the higher surface temperatures, the groundwater loses CO ,

becomes oversaturated with CaCO  and produces tufa deposition, even at a great distance from the spring,

favored by the running water turbulence, photosynthetic activity of mosses and algae, and evaporation of spray

droplets. Opposite effects, such as deposition of dissolved carbonate in the upper bedrock layers and the

emergence of aggressive spring waters undersaturated with CaCO , are expected to occur with major climatic

changes to cold conditions [11 ].

In all conditions, tectonics strongly influences tufa deposition by opening waterways in fractured rocks and giving

rise to fault steps across rivers, thus favoring the growth of tufa dams .
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