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The detection of product defects is essential in quality control in manufacturing. This study surveys stateoftheart

deep-learning methods in defect detection. First, we classify the defects of products, such as electronic

components, pipes, welded parts, and textile materials, into categories. Second, recent mainstream techniques

and deep-learning methods for defects are reviewed with their characteristics, strengths, and shortcomings

described. Third, we summarize and analyze the application of ultrasonic testing, filtering, deep learning, machine

vision, and other technologies used for defect detection, by focusing on three aspects, namely method and

experimental results. To further understand the difficulties in the field of defect detection, we investigate the

functions and characteristics of existing equipment used for defect detection. The core ideas and codes of studies

related to high precision, high positioning, rapid detection, small object, complex background, occluded object

detection and object association, are summarized. Lastly, we outline the current achievements and limitations of

the existing methods, along with the current research challenges, to assist the research community on defect

detection in setting a further agenda for future studies.

defect detection  quality control  deep learning

1. Introduction

In the manufacture of mechanical products in complex industrial processes, defects such as internal holes , pits

, abrasions , and scratches  arise, due to failure in design and machine production equipment as well as

unfavorable working conditions. Products may also easily corrode  and be prone to fatigue  because of daily

application. These defects increase the costs incurred by enterprises, shorten the service life of manufactured

products, and result in an extensive waste of resources, thereby causing substantial harm to people and their

safety . Hence, detecting defects is a core competency that enterprises should possess in order to improve the

quality of the manufactured products without affecting production. Automatic defect-detection technology has

obvious advantages over manual detection. It not only adapts to an unsuitable environment but also works in the

long run with high precision and efficiency. Research on defect-detection technology can reduce the production

cost, improve production efficiency and product quality, as well as lay a solid foundation for the intelligent

transformation of the manufacturing industry.

Therefore, many scholars have reviewed defect-detection-related technologies and applications to provide

references for the application and research of defect-detection technology. For example, in view of the defect-

detection technology applied by pharmaceutical products, Lalit Mohan Kandpal et al. . summarized the

application of hyperspectral , vibration spectrum , infrared , and other spectral technologies. For surface
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defect detection of manufactured products, Xianghua Xie  systematically recent advances in surface detection

using computer vision and image processing techniques. By comparing the findings of past studies, they find that

surface defect detection based on image processing requires high real-time performance in industrial applications.

For fabric defect detection, scholars  reviewed the application and development of defect-detection methods

commonly used in the production of textile fabrics from the perspective of defect-detection development of the

textile industry production. Thermal imaging technologies are widely used in many industrial areas. I. Jorge Aldave

 focused on the comparison of results obtained with commercially available non-experimental IR methods to

provide references for the cameras in the field of non-destructive defect detection. Defect-detection technology is a

hot topic in the industry and academia. However, scholars have yet to categorize product defect types (for

example, steel  and textile ), the main detection techniques, summary of applications of defect-detection

technology, existing equipment for defect detection, and other prospects. In addition, the mainline, review, and

summary of the research status of relevant technologies locally and abroad have yet to be realized.

This paper first classifies the common defects of electronic components, pipes, welding parts, and textile materials,

as shown in Figure 1. Then, it summarizes the mainstream deep-learning technology for defect detection and its

application status and analyzes the application situation of the main defect-detection equipment, in order to provide

reference for defect-detection technology in theory and practical application.
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Figure 1. Defects in different areas: (a) metallization peeloff of electronic components . (b) pipeline corrosion

. (c) defective with gas pore . (d) defect bigknot of textile materials . (e) shrinkage and porosity defect of

Casting . (f) defects in green, yellow, orange bounding box are scratch, cratering, hump, respectively in carbody

[23]. (g) Lack defect of gear . (h) light leakage defect on mobile screen . (i) Convexity defect in aluminum foil

. (j) Scratch defect of the wheel hub . (k) Branch defect of wood veneer . (l) Bubble defect of tire sidewall

.

2. Survey of Defect-Detection Technologies

Product defect-detection technology is mainly to detect the surface and internal defects of products. The defect-

detection technology refers to the detection technology of spot, pit, scratch, color differences and defect on the

product surface. Internal defect-detection technology mainly includes internal flaw detection, hole detection and

crack detection . At present, several methods are used to detect product quality, including deep learning ,

magnetic powder , eddy current testing , ultrasonic testing , and machine vision  detection methods.

Wet magnetic particle detection mixes the magnetic powder in water, oil, or other liquid media. Magnetic powder

marks the location of defects through liquid pressure and the attraction of the external magnetic field . The

moisture detection method has high sensitivity, and the liquid medium is recyclable . Dry Magnetic powder

testing  directly attaches magnetic powder onto the surface of the magnetized workpiece for defect detection.

This method is used for the local inspection of defects in large casting, welding parts, and other segments that are

unsuitable for wet detection. The continuous magnetic particle detection method detects defects in magnetic

suspension or powder under the external magnetic field . The method can be used to observe the defects in the

external magnetic field. Several factors that influence the precision of Magnetic powder testing include roughness

and the profile of the test piece, the geometrical characteristics of defects, the selected magnetization method, and

the quality of operators . Meanwhile, the factors that influence the sensitivity of Osmosis testing are imaging

reagent, the performance of osmotic fluid, quality of operators, and the influence of defects. Factors that influence

the accuracy of the detection of eddy current are the type and parameters of coil and material and the profile of the

test piece .

The ultrasonic testing effect is affected by the angle between the defect surface and the ultrasonic propagation

direction . If the angle is vertical, then the signal returned is strong, and the defect is easily detected. If the

angle is horizontal, then the signal returned is weak, which makes detecting a leak easy. Therefore, selecting the

appropriate detection sensitivity and corresponding probe to reduce leakage detection is necessary . The factors

that influence ultrasonic testing include projection direction, probe effectiveness, sound contact quality, and

instrument operating frequency .

Machine vision detection mainly consists of image acquisition and defect detection and classification. Because of

its fast, accurate, non-destructive and low-cost characteristics, machine vision is widely used. Machine vision

identifies objects mainly based on the color, texture and geometric features of objects. The quality of image

acquisition determines the difficulty of image processing. In turn, the quality of the image processing algorithm
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directly affects the accuracy and error detection rate of defect detection and classification . The deep-

learning method is also a defect-detection method that is based on image processing, which is widely used to

obtain useful features in massive data .

Clearly, the traditional defect-detection techniques and the popular deep-learning defect-detection techniques have

their advantages. The traditional detection methods are highly focused. For instance, Osmosis testing technology

 is only suitable for detecting defects in highly permeable and non-porous materials and have certain

advantages over other general methods. However, most of the traditional detection methods still need to rely on

manual assistance to complete, especially when a certain amount of instrument debugging is required before

testing, and the equipment development cost is high, which is not highly adaptable and limited by the equipment

life and manufacturing accuracy. Innovative defect-detection techniques, particularly machine vision and deep-

learning methods , have become the most popular in recent years and are one of the key technologies for

automating defect detection due to their versatility and lack of reliance on human assistance. Compared to

traditional defect detection methods, the new technologies offer better inspection results and lower costs, but still

rely on large amounts of learned data to drive model updates and improve inspection accuracy.

3. Survey of Deep-Learning Defect-Detection Technologies

Deep-learning technology has developed rapidly and made great success in object detection , intelligent robot

, saliency detection , parking garage sound event detection , sound event detection for smart city safety 

, UAV blade fault diagnosis  and other fields . Deep learning has a kind of deep neural network

structure with multiple convolutions layer. By combining low-level features to form a more abstract high-level

representation of attribute categories or features, the data can be better reached in abstract ways such as edge

and shape to improve the effectiveness of the deep-learning algorithm , Therefore, many researchers try to use

deep-learning technology to defect detection of product and improved the product quality . Table 1

summarizes the advantages and disadvantages of deep-learning methods commonly used in product defect

detection. It mainly includes convolutional neural network (CNN) , autoencoder neural network , deep

residual neural network , full convolution neural network , and recurrent neural network .

Table 1. Deep-Learning Defect-Detection Methods.
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Methods Strengths Weaknesses Applicable

CNN

It has a strong learning ability for high-
dimensional input data and can learn
abstract, essential and high-order
features from a small amount of
preprocessed and even the most
original data.

The good expression ability and
the calculation complex will
increase with the increase of
network depth.

Unlimited
material

Autoencoder
neural network

It has a good object information
representation ability, can extract the
foreground region in the complex

The input and output data
dimensions of the autoencoder
machine must be consistent.

Unlimited
material
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(1) Using the CNN to defect detection of product . CNN is a feedforward neural network. CNN consist of one or

more convolutional layers and fully connected layers, as well as associated weights and pooling layers .

Literature  is a very popular LeNet convolution neural network structure. LeNet network structure can be used to

detect defects in two situations: one is to design a complex multi-layer CNN structure, use different network

structure to extra image content features, and complete end-to-end training to detect defects in images ; the

other is to combine CNN with CRF model, train CNN with CRF energy function as constraint or optimize network

prediction results with CRF. And to achieve the detection of product defects .

(2) The product defect-detection technology based on the neural network . Autoencoder network mainly

includes two stages: coding and decoding. In the coding stage, the input signal is converted into a coding signal for

feature extraction; in the decoding stage, the feature information is converted into a reconstruction signal, and then

the reconstruction error is minimized by adjusting the weight and bias to realize the defect detection . The

difference between autoencoder networks and other machine learning algorithms is that the learning goal of the

autoencoder network is not for classification, but for feature learning . It also has a strong ability of

autonomous learning and highly nonlinear mapping. It can learn nonlinear metric functions to solve the problem of

segmentation of complex background and foreground regions .

(3) The product defect-detection technology of deep residual neural network . The deep residual network adds a

residual module on the basis of the convolutional neural network. The residual network is characterized by easy

optimization and can improve the accuracy by increasing the network depth . CNN, Generative Adversarial

Networks , etc. with the depth of the network increases, the extraction feature increases, but it is easy to cause

the activation function not to converge. The purpose of the deep residual network is to optimize the increasing

number of network layers with residual while increasing the network structure, so that the output and input element

dimensions of the convolution layer in the residual unit are the same, and then through the activation function to

reduce the loss.

Methods Strengths Weaknesses Applicable
background, and has good robustness
to the environment noise.

Depth residual
neural network

The residual network has lower
convergence loss and does not overfit,
so it has better classification
performance.

The network must cooperate with
deeper depth to give full play to its
structural advantages.

Unlimited
material

Full
convolution
neural network

It can extract the feature of any size
image, and obtain the high-level
semantic prior knowledge matrix, which
has a good effect on semantic level
object detection.

The feature matrix transformation
combined with the underlying
features is needed, and the
convergence speed of the model
is slow.

Unlimited
material

Recurrent
neural network

When there are fewer sample data, we
can learn the essential features of the
data and reduce the loss of data
information in the process of pooling.

With the increase of the number of
iterations in the network training
process, the recurrent neural
network model may appear
overfitting phenomenon.

Unlimited
material
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(4) Full convolution neural network . The fully connected layer is a connection between any two nodes between

two adjacent layers. A fully connected neural network uses a fully connected operation, so there will be more

weight values, which also means that the network will take up more memory and calculations . During the

calculation of the fully connected neural network, the feature map generated by the convolution layer is mapped

into a fixed-length feature vector. The full convolution neural network can accept the input image of any size, and

use the deconvolution layer to sample the feature map of the last convolution layer, it can recover to the same size

of the input image.so that a prediction can be generated for each pixel, while retaining the spatial information in the

original input image, and finally classify the feature map of the upper sampling pixel by pixel.

(5) Recurrent neural network recursively from the evolution direction of sequence data and all cyclic units are

connected in a chain manner, and the input is sequence data . The CNN model mainly extracts the feature

information of input layer test samples through convolution and pooling operations. The recurrent neural network

uses the recurrent convolution operation to replace the convolution operation on CNN. The difference is that the

recurrent neural network does not perform the pooling layer operation to extract the features after the recurrent

operation to extract the input layer features, but uses the recurrent convolution operation to process the features of

the samples.
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