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Titanium dioxide (TiO )  is the native oxide layer of Ti which has good biocompatibility as well as enriched physical,

chemical, electronic, and photocatalytic properties. The formed nanostructures during fabrication and the enriched

properties of TiO  have enabled various functionalization methods to combat the micro-organisms and enhance the

osteogenesis of Ti implants. 

TiO2  Ti implants  antibacterial properties  osteogenesis

1. Important Facts about Orthopedic Implant

1.1. Implant Failure

The success of bone surgical operations mainly depends on the quality of implantable biomaterials. Implant

success is mainly halted by the infections caused by post-operative complications. Certain factors may lead to

bacterial infections or even failure, including extensive damage to local tissues, improper fixation, smoking,

diabetes, chemotherapy, irradiation, and inappropriate surgical techniques . The implants may get an infection

from surgery equipment, medical staff, room atmosphere, or bacteria in the patient’s blood. The outcome of these

microbial infections sometimes becomes grave, leading to a second surgery, amputation, or even death . Implant

infections are mostly initiated by  Staphylococcus epidermidis  (S. epidermidis),  Staphylococcus aureus  (S.

aureus), Pseudomonas aeruginosa (P. aeruginosa), and Enterobacteriaceae  .

Implant failure may occur at early or late stage . Lack of osseointegration may lead to early implant failure,

whereas in late implant failures, osseointegration works well at the beginning but decreases later due to disease

and biochemical overload . Researchers have identified various reasons for implant failures, which include

infectious and physical damage . Implant failures can be minimized by maintaining hygienic measures, caring for

physical damage, and regular review of implants.

Progressive bone loss occurs due to inflammatory lesions in the soft tissues associated with the implants  and

peri-implant disease . Poor hygienic measures, unmanaged diseases such as diabetes, and the use of

corticosteroids in immune-compromised individuals may all lead to that situation . Despite taking all necessary

hygienic measures, bacterial infections may still occur. Studies have suggested that joint infections may take place

in 1% of primary and 3–7% of multiple surgeries . Patients with multiple surgeries have a higher risk of
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mortality and infection . Implant infections and failures are a large economic burden on the health system. In the

US, it costs more than $8.6 billion annually .

1.2. Fundamental Requirements of Orthopedic Implants

Bone is naturally composed of organic, inorganic, and collagen fibrils. The nano-hierarchical structures give shape

and mechanical strength to bones . The structures include small molecular amino acids forming tropocollagen

helixes and nanoscale collagen fibers forming a microporous network of bones. There is a crucial interaction

between surface characteristics and the extracellular matrix for osteointegration . Bone mesenchymal stem cells

(BMSC) in the bone marrow are known to typically respond to metallic implants with the production of soft tissue

rather than bone, which causes implants to fail . Guiding stem cell differentiation to a desired specific line on

the surface of the material is a key factor in the success of implants . Osteoblasts are mature bone cells,

whereas osteoprogenitor cells are pluripotent cells having the capacity to differentiate into different kinds of cells.

Osteoblasts and osteoprogenitor cells are in direct contact with the implants.

For better outcomes, the hierarchical structures of the bone must be simulated by the implant with surface

nanostructures to support bone tissue regeneration. Apart from the surface nanostructures, other modifications,

including nanoparticles, may help further. For example, bismuth oxide (Bi O ) has features including

electrochemical stability, high biocompatibility, and a medium band gap . The contact of Bi O  nanoparticles

and TiO  nanocones resulted in a heterojunction that formed a built-in electric field and promoted the osteogenesis

of BMSC on the basis of TiO  nanostructures  .

2. Functionalization Approaches of TiO  for Better
Antibacterial and Osteogenesis Property

2.1. Topological Influence of the TiO  Nanostructures

Topological modification is among the proposed methods to achieve surface functionalization. Studies have shown

that surface nanostructure and topography may affect the migration, elongation, proliferation, and differentiation of

stem cells . In fact, cells and tissues in vivo will experience many topographic features ranging from

nanoscale to microscale . Thus, building a surface nanostructure on implants is an important research direction

in the fields of artificial bones, joints, and dental implants . The regulation of cell fate by surface

topography is carried out by direct contact with adhering cells.

It has been widely accepted to form TiO  nanotubes on Ti surfaces by doing anode oxidation, and the annealing

after anodization enhances the nanotube’s roughness and osseointegration capability . Cell behavior is

affected by the diameter of TiO   nanotubes . For instance, small nanotubes (30 nm in diameter) have been

shown to promote BMSC adherence without significant differentiation, while larger nanotubes (70–100 nm in

diameter) cause a dramatic lengthening of stem cells, which induces cytoskeletal stress and selective

differentiation into osteoblast-like cells . A diameter of 70 nm is the optimum size of TiO   nanotubes for
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osteogenic differentiation of stem cells derived from human adiposity . The diameters of TiO   nanotubes are

crucial for surface roughness and hydrophilicity. Several studies have shown that increasing diameter can increase

antibacterial characteristics . Ercan et al. found that nanotubes with a diameter of 80 nm had more

antibacterial properties than the 30 nm diameter nanotubes against various strains of  S. aureus  due to higher

hydrophobicity . Other factors apart from the diameter, including the length, the gap between walls, and crystal

forms, also influence the TiO  nanotubes. Nano-engineered Ti prepared from hydrothermal etching has also been

reported to be effective against gram-negative bacteria, E. coli  .

TiO  nanorod, another TiO  nanostructure, also significantly influences the BMSC behavior . The TiO  nanorod

array surface is very effective in regulating the differentiation of BMSC towards osteoblasts. In another study,

TiO  ceramics were synthesized and TiO  nanorods were used to compare the BMSC cellular adhesion and self-

renewal characteristics when commercial culture plates were used as the control group . All samples

demonstrated good biocompatibility from day 2 to day 8, suggesting that TiO  ceramic promotes cell adhesion,

renewal, and cellular morphology).

Increasing the average surface roughness of the implant promotes osteointegration and is another topology-based

surface modification . The surface roughness enhances protein adsorption and osteoblastic functions . The

inorganic coating may include calcium phosphate/hydroxyapatite and certain peptides . However, a thick layer of

calcium phosphate coating has poor stability . To address this issue, biomimetic strategies were devised, which

have shown good versatility . This coating has great osteoconductive potential in vivo .

2.2. Drug Loading and Release Based on the TiO  Nanostructures

Antibiotics are very effective at killing bacteria, but antibiotics taken by oral or muscular injection have very low

efficiency in treating infections in the bone. Localized drug release from the implant surface can solve the problem.

TiO   nanostructures such as nanotubes and nanopores are highly facilitated to do drug-loading .

TiO  nanotubes are especially favored because of their larger surface area and one-end open feature . The drug

delivery of the nanotubes is significantly affected by the fabrication conditions. It is also found that drug release

was promoted by increasing the dimensions (length, width, and diameter) of nanotubes . Loading into the

nanotubes with infection-reducing drugs, such as penicillin and streptomycin, largely improves the performance of

titanium implants .

By increasing the dimensions of the nanotubes, drug release was promoted, but drug loss also increased during

the rinsing process. To overcome this problem, periodic structures in the nanotubes are prevented, which

demonstrated a significant improvement in the drug release control; the periodic structures largely reduced drug

burst release from 77% to 50% and extended overall release from 4 days to more than 17 days .

2.3. Element Incorporation

Apart from biotics, the antibacterial property can also be promoted by introducing antibacterial ions, such as silver

(Ag), zinc (Zn), and magnesium (Mg) . Jia et al. reported a method to incorporate Ag nanoparticles
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into TiO  microporous coatings using polydopamine . A sustained release of Ag  ions for up to 28 days was

observed, which endowed the Ti implant with long-term antibacterial ability. An additional trap-killing of the bacteria

was enabled with these Ag nanoparticles. Negatively charged bacteria were attracted toward the positively charged

Ag nanoparticles and killed with more efficiency. More Ag doping to TiO  for better antibacterial properties can be

found in the literature .

Zn is an important trace element in the human body, and it has a pivotal role in DNA synthesis, enzymatic activities,

biomineralization, hormonal activities, and antibacterial characteristics . Zn doping in TiO -based

biomaterial has also been found to possess excellent antibacterial activities and better cell-material interactions 

. The bacterial killing was due to the penetration of Zn  in the bacterial surface membranes .

Mg is a microelement in the body and contributes to numerous cellular functions including enzymatic reactions,

proteins, and nucleic acid synthesis; it is also effective in reducing inflammation and bone loss . The

incorporation of Mg can inhibit bacterial infection and osteolysis. Yang Y et al. designed a surface with Mg

incorporated into the TiO  nanotubes . The surface demonstrated remarkable antibacterial properties, enhanced

cytocompatibility, and inhibited osteoclast genesis, both  in vitro  and  in vivo. The nanostructures and alkaline

microenvironment during degradation were responsible for the antimicrobial ability. The continuous release of Mg

suppressed the osteolysis via down-regulation of NF-κB/NFATc1 signaling. Mg doping has multiple therapeutic

effects; however, an alkaline environment may pose a serious challenge in clinical use. Controlled release of Mg is

the possible solution but needs further exploration . Many other studies support that Mg incorporation can

enhance the antibacterial and osteogenesis property of the implants .

2.4. Electron Transfer

In recent years, an antibacterial theory based on the electron transfer between the material surface and the

microbes has been proposed. Electron transfer is a common event in the photochemical modulation of materials,

as well as a fundamental event for the energy generation of organisms . A group of microbes can do

extracellular electron transfer spontaneously by transferring the electron outside the cells to environmental

minerals . However, using the electron transfer approach to inhibit implant infection is a quite new topic .

Vecitis et al. found that the antibacterial properties of single-arm carbon nanotubes are closely related to their

electronic state. With the same diameter and length, metallic carbon nanotubes can cause severe deformation and

collapse of the bacterial cells, while those in a semi-conductive state have no antibacterial properties . Faria et

al. found that the composite structure of Ag nanoparticles and graphene lamellae has a strong bactericidal ability,

but graphene lamellae itself does not, suggesting that the electronic interactions between the substrate and the

modified materials have a dominant impact on the antibacterial property .

TiO  also has complex interactions with the bacteria and osteoblasts via electron transfer. TiO  is a semiconductor,

and biological cells can also be regarded as semiconductors . Once contacted, they form heterojunctions, which

may involve electron transfer. Therefore, functionalization based on the electron transfer property also influences
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the performance of TiO  as an orthopedic implant. Au and Ag nanoparticles or graphene sheets deposited on the

TiO  surface can endow TiO  with antibacterial properties . On the Ag@TiO  surface, electrons

were stored on the Ag nanoparticles, and induced valence-band hole (h+) accumulation, which caused cytosolic

content leakage of the bacteria  . On the Au@TiO  surface, electron transfer was due to the plasmon effect of Au

nanoparticles, which captured the electrons in the respiratory chain on the living bacterial cell membrane and

transferred them to the TiO   substrate.  Au@TiO   formed the Schottky barrier, which prevented the return of

electrons, causing continued electron loss in the bacteria until death . Similarly, graphene coating resulted in

a large increase in the electrical conductivity of TiO  because of the combination of the unpaired π electrons of

graphene and the Ti atoms . The enhanced electron transfer from the bacterial cell membrane to the graphene-

TiO  interface leads to bacterial death.

Electron transfer also works for osteogenesis. Zhou et al. fabricated a SnO –TiO  heterojunction and hierarchical

structure on the surface of the Ti implant . The electron transfer among the hierarchical Schottky barrier

significantly improved the osteogenic function of the cells around the implant both in vitro and in vivo. In another

work, they constructed a layered double hydroxide (LDHs)–TiO   heterojunction, which promoted the transfer of

holes in materials to the physiological environment, enhancing the antibacterial effect of the implant . Ning et al.

generated a microscale electrostatic field (MEF) by doing patterned NT (rutile) and IT (anatase) surface

modifications on Ti . The electron transfer between NT and IT zones formed a sustained built-in MEF, which

polarized the BMSC and activated the expression of osteogenic genes. The MEF greatly promoted bone

regeneration around the implant.

Apart from TiO , the Ti surface can also make electron transfer-based interactions with the bacteria. In a study by

Wang et al., Ag was implanted on the Ti surface using plasma technology, and this modification changed the Ti

surface from non-antibacterial to antibacterial . The bacteria-killing was not due to Ag  ion release, but due to

the micro galvanic reaction at the nano interface between Ag nanoparticles and Ti substrate. The reaction disturbed

the process of electron transfer in the bacteria respiratory chain and produced a large number of reactive oxygen

species (ROS) in the bacterial cells, resulting in their death.

2.5. Electrical Functionalization

Based on the electron transfer mechanism of the above studies, researchers have further developed an innovative

method to make the TiO  surface obtain antibacterial properties through electrical tuning. In the beginning, it was

found that an alternating current (AC) of about ±2 μA applied to the ZnO nanowires in a physiological solution could

significantly improve the antibacterial property of ZnO after the current was removed. The “sustained bacteria

sterilization” was different from the “instant bacteria sterilization” because the latter was due to electroporation

when AC was applied to the nanowires, but the former was due to surface functionalization by the electrical tuning

. After that, a 2 V low-voltage direct current (DC) power supply was used to conduct electrical treatment on the

Ti plate with a TiO  layer in the culture medium for 20 min. This DC tuning also changed the TiO  surface from non-

antibacterial to highly antibacterial . After the electric tuning, TiO  gained a strong ability to kill various bacteria

and showed strong inhibition of biofilm formation. Meanwhile, the DC-tuned TiO  surface had no negative effect on
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the osteoblast. The adhesion and proliferation of the cells were found to be as effective as those on the control

TiO  surface.
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