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Titanium dioxide (TiO,) is the native oxide layer of Ti which has good biocompatibility as well as enriched physical,
chemical, electronic, and photocatalytic properties. The formed nanostructures during fabrication and the enriched
properties of TiO, have enabled various functionalization methods to combat the micro-organisms and enhance the

osteogenesis of Ti implants.

TiO2 Ti implants antibacterial properties osteogenesis

| 1. Important Facts about Orthopedic Implant
1.1. Implant Failure

The success of bone surgical operations mainly depends on the quality of implantable biomaterials. Implant
success is mainly halted by the infections caused by post-operative complications. Certain factors may lead to
bacterial infections or even failure, including extensive damage to local tissues, improper fixation, smoking,
diabetes, chemotherapy, irradiation, and inappropriate surgical techniques . The implants may get an infection
from surgery equipment, medical staff, room atmosphere, or bacteria in the patient’s blood. The outcome of these
microbial infections sometimes becomes grave, leading to a second surgery, amputation, or even death 2. Implant
infections are mostly initiated by Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S.

aureus), Pseudomonas aeruginosa (P. aeruginosa), and Enterobacteriaceae 2,

Implant failure may occur at early or late stage . Lack of osseointegration may lead to early implant failure,
whereas in late implant failures, osseointegration works well at the beginning but decreases later due to disease
and biochemical overload Bl. Researchers have identified various reasons for implant failures, which include
infectious and physical damage 8. Implant failures can be minimized by maintaining hygienic measures, caring for

physical damage, and regular review of implants.

Progressive bone loss occurs due to inflammatory lesions in the soft tissues associated with the implants ¥ and
peri-implant disease . Poor hygienic measures, unmanaged diseases such as diabetes, and the use of
corticosteroids in immune-compromised individuals may all lead to that situation BIl2l. Despite taking all necessary
hygienic measures, bacterial infections may still occur. Studies have suggested that joint infections may take place

in 1% of primary and 3-7% of multiple surgeries Q91 patients with multiple surgeries have a higher risk of
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mortality and infection 19, Implant infections and failures are a large economic burden on the health system. In the
US, it costs more than $8.6 billion annually 19112],

1.2. Fundamental Requirements of Orthopedic Implants

Bone is naturally composed of organic, inorganic, and collagen fibrils. The nano-hierarchical structures give shape
and mechanical strength to bones 23], The structures include small molecular amino acids forming tropocollagen
helixes and nanoscale collagen fibers forming a microporous network of bones. There is a crucial interaction
between surface characteristics and the extracellular matrix for osteointegration 4. Bone mesenchymal stem cells
(BMSC) in the bone marrow are known to typically respond to metallic implants with the production of soft tissue
rather than bone, which causes implants to fail 13116 Guiding stem cell differentiation to a desired specific line on
the surface of the material is a key factor in the success of implants 1718 Osteoblasts are mature bone cells,
whereas osteoprogenitor cells are pluripotent cells having the capacity to differentiate into different kinds of cells.

Osteoblasts and osteoprogenitor cells are in direct contact with the implants.

For better outcomes, the hierarchical structures of the bone must be simulated by the implant with surface
nanostructures to support bone tissue regeneration. Apart from the surface nanostructures, other modifications,
including nanoparticles, may help further. For example, bismuth oxide (Bi,O3) has features including
electrochemical stability, high biocompatibility, and a medium band gap 1229, The contact of Bi,O3 nanoparticles
and TiO, nanocones resulted in a heterojunction that formed a built-in electric field and promoted the osteogenesis
of BMSC on the basis of TiO, nanostructures 21,

2. Functionalization Approaches of TiO, for Better
Antibacterial and Osteogenesis Property

2.1. Topological Influence of the TiO, Nanostructures

Topological modification is among the proposed methods to achieve surface functionalization. Studies have shown
that surface nanostructure and topography may affect the migration, elongation, proliferation, and differentiation of
stem cells 2228124 |n fact, cells and tissues in vivo will experience many topographic features ranging from
nanoscale to microscale 231, Thus, building a surface nanostructure on implants is an important research direction
in the fields of artificial bones, joints, and dental implants (281271128 The regulation of cell fate by surface

topography is carried out by direct contact with adhering cells.

It has been widely accepted to form TiO, nanotubes on Ti surfaces by doing anode oxidation, and the annealing
after anodization enhances the nanotube’s roughness and osseointegration capability 2229, Cell behavior is
affected by the diameter of TiO, nanotubes 2. For instance, small nanotubes (30 nm in diameter) have been
shown to promote BMSC adherence without significant differentiation, while larger nanotubes (70-100 nm in
diameter) cause a dramatic lengthening of stem cells, which induces cytoskeletal stress and selective

differentiation into osteoblast-like cells Bl A diameter of 70 nm is the optimum size of TiO, nanotubes for
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osteogenic differentiation of stem cells derived from human adiposity 2. The diameters of TiO, nanotubes are
crucial for surface roughness and hydrophilicity. Several studies have shown that increasing diameter can increase
antibacterial characteristics 3334, Ercan et al. found that nanotubes with a diameter of 80 nm had more
antibacterial properties than the 30 nm diameter nanotubes against various strains of S. aureus due to higher
hydrophobicity 2], Other factors apart from the diameter, including the length, the gap between walls, and crystal
forms, also influence the TiO, nanotubes. Nano-engineered Ti prepared from hydrothermal etching has also been

reported to be effective against gram-negative bacteria, E. coli [2€,

TiO, nanorod, another TiO, nanostructure, also significantly influences the BMSC behavior B2, The TiO, nanorod
array surface is very effective in regulating the differentiation of BMSC towards osteoblasts. In another study,
TiO, ceramics were synthesized and TiO, nanorods were used to compare the BMSC cellular adhesion and self-
renewal characteristics when commercial culture plates were used as the control group 4. All samples
demonstrated good biocompatibility from day 2 to day 8, suggesting that TiO, ceramic promotes cell adhesion,

renewal, and cellular morphology).

Increasing the average surface roughness of the implant promotes osteointegration and is another topology-based
surface modification 8. The surface roughness enhances protein adsorption and osteoblastic functions B2, The
inorganic coating may include calcium phosphate/hydroxyapatite and certain peptides 2. However, a thick layer of
calcium phosphate coating has poor stability 1. To address this issue, biomimetic strategies were devised, which

have shown good versatility 28142 This coating has great osteoconductive potential in vivo 42!,

2.2. Drug Loading and Release Based on the TiO, Nanostructures

Antibiotics are very effective at killing bacteria, but antibiotics taken by oral or muscular injection have very low
efficiency in treating infections in the bone. Localized drug release from the implant surface can solve the problem.
TiO, nanostructures such as nanotubes and nanopores are highly facilitated to do drug-loading [B8139],
TiO, nanotubes are especially favored because of their larger surface area and one-end open feature 4!, The drug
delivery of the nanotubes is significantly affected by the fabrication conditions. It is also found that drug release
was promoted by increasing the dimensions (length, width, and diameter) of nanotubes 3. Loading into the
nanotubes with infection-reducing drugs, such as penicillin and streptomycin, largely improves the performance of
titanium implants 281471,

By increasing the dimensions of the nanotubes, drug release was promoted, but drug loss also increased during
the rinsing process. To overcome this problem, periodic structures in the nanotubes are prevented, which
demonstrated a significant improvement in the drug release control; the periodic structures largely reduced drug

burst release from 77% to 50% and extended overall release from 4 days to more than 17 days (28],

2.3. Element Incorporation

Apart from biotics, the antibacterial property can also be promoted by introducing antibacterial ions, such as silver

(Ag), zinc (Zn), and magnesium (Mg) “8I4ABAIBL52] ji5 et al. reported a method to incorporate Ag nanoparticles
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into TiO, microporous coatings using polydopamine 8!, A sustained release of Ag* ions for up to 28 days was
observed, which endowed the Ti implant with long-term antibacterial ability. An additional trap-killing of the bacteria
was enabled with these Ag nanoparticles. Negatively charged bacteria were attracted toward the positively charged
Ag nanoparticles and killed with more efficiency. More Ag doping to TiO, for better antibacterial properties can be
found in the literature [31(541(55],

Zn is an important trace element in the human body, and it has a pivotal role in DNA synthesis, enzymatic activities,
biomineralization, hormonal activities, and antibacterial characteristics B8IEZIBEIBIA00 71 doping in TiO,-based
biomaterial has also been found to possess excellent antibacterial activities and better cell-material interactions 1]

(621 The bacterial killing was due to the penetration of Zn%* in the bacterial surface membranes (€3],

Mg is a microelement in the body and contributes to numerous cellular functions including enzymatic reactions,
proteins, and nucleic acid synthesis; it is also effective in reducing inflammation and bone loss [B463 The
incorporation of Mg can inhibit bacterial infection and osteolysis. Yang Y et al. designed a surface with Mg
incorporated into the TiO, nanotubes 8. The surface demonstrated remarkable antibacterial properties, enhanced
cytocompatibility, and inhibited osteoclast genesis, both in vitro and in vivo. The nanostructures and alkaline
microenvironment during degradation were responsible for the antimicrobial ability. The continuous release of Mg?*
suppressed the osteolysis via down-regulation of NF-kB/NFATcl signaling. Mg doping has multiple therapeutic
effects; however, an alkaline environment may pose a serious challenge in clinical use. Controlled release of Mg is
the possible solution but needs further exploration 7. Many other studies support that Mg incorporation can

enhance the antibacterial and osteogenesis property of the implants EZI[68],

2.4. Electron Transfer

In recent years, an antibacterial theory based on the electron transfer between the material surface and the
microbes has been proposed. Electron transfer is a common event in the photochemical modulation of materials,
as well as a fundamental event for the energy generation of organisms (2. A group of microbes can do
extracellular electron transfer spontaneously by transferring the electron outside the cells to environmental

minerals 9. However, using the electron transfer approach to inhibit implant infection is a quite new topic [,

Vecitis et al. found that the antibacterial properties of single-arm carbon nanotubes are closely related to their
electronic state. With the same diameter and length, metallic carbon nanotubes can cause severe deformation and
collapse of the bacterial cells, while those in a semi-conductive state have no antibacterial properties 72, Faria et
al. found that the composite structure of Ag nanoparticles and graphene lamellae has a strong bactericidal ability,
but graphene lamellae itself does not, suggesting that the electronic interactions between the substrate and the

modified materials have a dominant impact on the antibacterial property [£8],

TiO, also has complex interactions with the bacteria and osteoblasts via electron transfer. TiO, is a semiconductor,
and biological cells can also be regarded as semiconductors 74, Once contacted, they form heterojunctions, which

may involve electron transfer. Therefore, functionalization based on the electron transfer property also influences
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the performance of TiO, as an orthopedic implant. Au and Ag nanoparticles or graphene sheets deposited on the
TiO, surface can endow TiO, with antibacterial properties ZAIZSIIEITAIEIT - On the Ag@TiO, surface, electrons
were stored on the Ag nanoparticles, and induced valence-band hole (h+) accumulation, which caused cytosolic
content leakage of the bacteria 2. On the Au@TiO, surface, electron transfer was due to the plasmon effect of Au
nanoparticles, which captured the electrons in the respiratory chain on the living bacterial cell membrane and
transferred them to the TiO, substrate. Au@TiO, formed the Schottky barrier, which prevented the return of
electrons, causing continued electron loss in the bacteria until death A9, Similarly, graphene coating resulted in
a large increase in the electrical conductivity of TiO, because of the combination of the unpaired 1t electrons of
graphene and the Ti atoms [%. The enhanced electron transfer from the bacterial cell membrane to the graphene-
TiO, interface leads to bacterial death.

Electron transfer also works for osteogenesis. Zhou et al. fabricated a SnO,—TiO, heterojunction and hierarchical
structure on the surface of the Ti implant B, The electron transfer among the hierarchical Schottky barrier
significantly improved the osteogenic function of the cells around the implant both in vitro and in vivo. In another
work, they constructed a layered double hydroxide (LDHs)-TiO, heterojunction, which promoted the transfer of
holes in materials to the physiological environment, enhancing the antibacterial effect of the implant 2, Ning et al.
generated a microscale electrostatic field (MEF) by doing patterned NT (rutile) and IT (anatase) surface
modifications on Ti 83, The electron transfer between NT and IT zones formed a sustained built-in MEF, which
polarized the BMSC and activated the expression of osteogenic genes. The MEF greatly promoted bone

regeneration around the implant.

Apart from TiO,, the Ti surface can also make electron transfer-based interactions with the bacteria. In a study by
Wang et al., Ag was implanted on the Ti surface using plasma technology, and this modification changed the Ti
surface from non-antibacterial to antibacterial /2. The bacteria-killing was not due to Ag* ion release, but due to
the micro galvanic reaction at the nano interface between Ag nanoparticles and Ti substrate. The reaction disturbed
the process of electron transfer in the bacteria respiratory chain and produced a large number of reactive oxygen

species (ROS) in the bacterial cells, resulting in their death.

2.5. Electrical Functionalization

Based on the electron transfer mechanism of the above studies, researchers have further developed an innovative
method to make the TiO, surface obtain antibacterial properties through electrical tuning. In the beginning, it was
found that an alternating current (AC) of about 2 pA applied to the ZnO nanowires in a physiological solution could
significantly improve the antibacterial property of ZnO after the current was removed. The “sustained bacteria
sterilization” was different from the “instant bacteria sterilization” because the latter was due to electroporation
when AC was applied to the nanowires, but the former was due to surface functionalization by the electrical tuning
[84] After that, a 2 V low-voltage direct current (DC) power supply was used to conduct electrical treatment on the
Ti plate with a TiO, layer in the culture medium for 20 min. This DC tuning also changed the TiO, surface from non-
antibacterial to highly antibacterial B2, After the electric tuning, TiO, gained a strong ability to kill various bacteria

and showed strong inhibition of biofilm formation. Meanwhile, the DC-tuned TiO, surface had no negative effect on
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the osteoblast. The adhesion and proliferation of the cells were found to be as effective as those on the control

TiO, surface.
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