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While extracellular vesicles (EVs) have been shown to play a role in CNS disorders, the intersection of EVs, drug
use, and HIV is of particular interest. The interactions of HIV and drugs of abuse are a growing concern given the
increasing incidence of HIV transmission via shared needles in illicit drug use. As a drug commonly taken through
shared needles, METH is being investigated due to its role in exacerbating HIV-mediated inflammation through
both increased vesicular shedding and extracellular release. In vivo experiments have shown that cocaine-induced
EV release impacts synaptic plasticity through noncoding RNA. Nicotine studies have also highlighted how the
differential packaging of antioxidant enzyme cargoes into EVs affects nicotine-mediated HIV pathogenesis.
Additionally, studies of both morphine and heroin have demonstrated differences in the miRNA cargoes of EVs,
potentially impacting gene expression and exacerbating HIV. Studies of alcohol use in combination with HIV have
shown that EV cargoes such as cytokines are affected in HIV-infected subjects who use alcohol. Investigating EV
cargo alterations in all forms of substance abuse studies may allow the EV, HIV, and addiction fields to progress

towards diagnosis and remedies for substance-abuse-induced toxicity in HIV patients.

Extracellular vesicles (EVS) substance abuse HIV cocaine methamphetamine (METH)

alcohol heroin nicotine

| 1. Introduction
1.1. Extracellular Vesicles

Extracellular vesicles (EVs) are a broad, heterogeneous class of membranous lipid-bilayer vesicles that facilitate
intercellular communication throughout the body. Secreted from all cell types, these cargo carriers have become
important targets of investigation in various fields of study for their potential role in disease pathologies, drug-
delivery systems, and therapeutics M2, For the purpose of this review, all three classes of EVs—exosomes (30—
150 nm), microvesicles (100-500 nm), and apoptotic bodies (500-5000 nm)—are collectively referred to as EVs,
as endorsed by the International Society for Extracellular Vesicles . EVs carry a variety of cargo types, including
proteins, lipids, DNA fragments, and a variety of small noncoding RNAs, including miRNAs, mRNAs, and siRNAs 4
Bl The contents of EVs are reflective of the intracellular environments of their host cells, and EVs are released by
both healthy and diseased cells 8. EVs can transfer these cargoes from host cells to recipient cells, inducing

functional transformations within recipient cells EIE, Regulation of EV secretion remains an active area of study,
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although certain stimuli and cellular conditions have been implicated in triggering EV release from different cell
types 10,

EVs play a role in various aspects of healthy physiology, including immune responses 11121 embryonic stem-cell
communication during embryo implantation 22l and exercise 14151 EVs also shuttle essential biomolecules
between cells that are critical for intercellular communication [28l, antigen presentation 22, and signal transduction
(18] Moreover, EVs derived from mesenchymal stem cells have garnered interest in the fields of tissue repair,
inflammation, anticancer therapy 22, and stroke 2921 Further, compelling evidence marks EVs as a potential
drug-delivery system 222311241 indeed, engineered EVs are capable of passing through the blood-brain barrier
(BBB) [23], which has traditionally been a roadblock for efficient drug delivery to the brain [28127]128][29],

Besides their beneficial role in the maintenance of physiological homeostasis and potentially therapeutic,
diagnostic, and drug-delivery capabilities, EVs have been implicated in many pathogenies, including cardiovascular
disease 9, neurodegenerative disorders BLUB2IE8I34] traumatic brain injury 33181 H|v [B788] and a wide range of
cancers [3240141]142][43]  For instance, EVs may contribute to cancerous proliferation through angiogenesis,
migratory and invasive capacities, and formation of metastatic lesions 24!, Dissecting the role and effects of EVs in
these disease pathologies presents an ongoing challenge and an opportunity to progress understanding of the
mechanisms underlying a diverse array of pressing health issues. Specifically, EV contents may indicate
pathological changes in the body, and analysis of the molecular cargoes of the EVs may contribute to the

advancement of diagnostic and treatment methods for these diseases.

1.2. Extracellular Vesicles in CNS Disorders and Addiction

1.2.1. EVs and CNS Disorders

Central nervous system (CNS) cells like neurons, microglia, astrocytes, oligodendrocytes, ependymal, and brain
endothelial cells communicate by releasing EVs containing signaling molecules 43148l Evs aid in the signal
transmission between neurons and glial cells, along with communication between CNS and peripheral body
systems 17481149 Evs maintain cellular homeostasis and clear abnormal aggregates; however, they also
contribute to pathogenesis by delivering toxic substances to healthy cells, leading to inflammation and
neurodegeneration BY and thereby perpetuating CNS-associated neurodegenerative disorders B2 Such CNS
disorders include lysosomal storage disorders, Parkinson’s disease (PD) B2, Alzheimer’s disease (AD) B4IB5I58I57],
Huntington’s disease, amyotrophic lateral sclerosis 8, epilepsy, and multiple sclerosis [BBAGL62ES]  Eyg
exacerbate disease pathogenesis by providing transportation to abnormally folded proteins and disease factors like
a-synuclein B4 amyloid beta (AB) and Tau [E2l88] huntingtin, and superoxide dismutase 1 521581,

EVs in diseased states differ significantly in their morphology and function, making them ideal biomarker
candidates 87 as they contain unique proteins depending on the healthy or diseased microenvironment conditions
(681691 The ability of EVs to cross the BBB, combined with their prevalence in bodily fluids, makes it possible to
detect certain biomarkers found in difficult-to-assess regions like the CNS and spleen L%, EVs may also contribute

to neuroprotection; in AD, EVs sequester AB in vitro and promote its clearance, thus reducing neurotoxicity 2]
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(73l Moreover, neuronal EVs carry extracellular RNAs 24731 including disease miRNA signatures that could be

used as biomarkers to diagnose CNS disorders B8IZ6I77I78]

Additionally, EVs are potential candidates as therapeutic delivery agents as they can be easily loaded with
therapeutic drugs, are minimally degraded, maintain their morphology and function, and can cross the BBB 2798
8182l pye to their ability to carry functional small miRNA, tRNAs, lipids, and proteins 83, EVs are excellent
carriers of the therapeutic agents. Besides acting as protective barriers against degradation and immunoreactivity,
EVs can also increase the efficiency of delivery to targets, further aiding drug delivery and therapy for CNS

diseases.

1.2.2. EVs and Substance Abuse

Investigations into the role of EVs in drug addiction and as future therapeutics for addiction are currently
represented by a small but developing body of work 4. Recent evidence points to a role of EV cargoes,
specifically noncoding regulatory miRNAs 2 in mediating the body’s response to a variety of addictive
substances, including cocaine 887 cannabinoids (8 nicotine B2, alcohol Y, and opioids 192 These studies
indicate that EVs and their cargoes may play a significant role in modulating addiction to a variety of substances,
but further investigation is required to understand the full impact of EVs on addictive pathways and of addictive
substances on EV secretion, uptake, and cargo content. There is a significant gap in the knowledge connecting
substance abuse and our understanding of EVs and their cargoes in those addiction pathologies, although many

investigators are currently working to close that gap.

| 2. EVs, Substance Abuse, and HIV

The Centers for Disease Control and Prevention (CDC) reports that out of 38,739 HIV infected individuals in the
United States, 9% (3641) are individuals who inject drugs (http://www.cdc.gov/hiv/group/hiv-idu.html). As EVs can
cross the BBB, the presence of HIV components in EVs can contribute to neuroinflammation (23 and
neurodegeneration [8. The interactions of HIV and drugs of abuse are of growing interest given the growing
incidence of HIV transmission via shared needles during illicit drug use 24931961 Hjv exposure may also
perpetuate addiction to stimulants 4. Studies of HIV suggest that neuropathologies and substance abuse
disorders often have a complex relationship that cannot be classified in one direction 28I89I1001: H|\/ and substance
use together frequently result in the exacerbation of CNS disorders L2, EVs are likely a key communication factor
causing this exacerbation and interrelationship between HIV and substance abuse 192 however further research

needs to be performed.

HIV is particularly hard to treat due to its ability to amass beyond the blood—brain barrier; it has a wide variety of
impacts on the brain, including increased EV release 10311104 Recently, research has investigated the role EVs
play in the progression of microglia-mediated inflammation of HIV-infected subjects B3I1203I105] Thjs inflammatory
state is not resolved by combination antiretroviral therapy (CART) and remains a persisting issue 231, Currently,

METH is being investigated for its potential role in exacerbating HIV-mediated inflammation due to its ability to
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increase vesicular shedding and extracellular release [196I[101]1107][108] Additionally, macrophage-derived EVs from
primary human pulmonary arterial smooth muscle cells have been shown to be critically regulated by cocaine
addiction and HIV infection 21091,

Much like cocaine and METH, nicotine exacerbates HIV pathogenesis through the oxidative stress pathway [241110]
Interestingly, EVs have revealed a strong correlation between cigarette smoking and HIV 119, A recent study found
that cigarette smoke condensate (CSC) reduced the total protein and antioxidant capacity in EVs isolated from
HIV-infected and uninfected macrophages 211, The EVs isolated from CSC-treated uninfected cells exhibited a
protective property against cytotoxicity and viral replication in HIV-infected macrophages. Intriguingly, EVs isolated
from HIV-infected cells lost their protective capacity. Further, levels of catalase and PRDX6, antioxidant enzyme
cargoes, were decreased in EVs derived from HIV-infected cells. These results highlight the role of antioxidant
enzymes in HIV replication and how the differential packaging of these cargoes into EVs affects nicotine-mediated
HIV pathogenesis 11l |ndeed, Ranjit et al. suggest that because neurons have a weak antioxidant defense
capacity and therefore rely on astrocytes to supply antioxidants, synthetically developed EVs loaded with
antioxidant cargoes may be an efficient strategy for offsetting smoking-induced oxidative stress and HIV replication
in the CNS [112],

Previous studies suggest that opioids may also play a role in exacerbating HIV-related neurological dysfunction
and neuropathogenesis 222, In simian immunodeficiency virus (SIV)-infected macaque monkeys, a model of HIV,
opioid dependency has been demonstrated to increase mortality and exacerbate viral replication 1141, A 2012 study
built upon previous studies of the consequences of HIV infection and opioid use by investigating the role of EV-
delivered miR-29b in the regulation of PDGF-B gene expression in opioid-dependent SIV-infected macaques 113!,
PDGF-B plays a crucial role in neuronal homeostasis, primarily via the protection of hippocampal neurons from
glutamate-induced damage. The results of this study indicated that morphine exposure led to increased miR-29b
secretion from astrocytes via EVs and demonstrated that increased miR-29b presentation decreased cell viability
via decreased PDGF-B expression. This early study was the first to demonstrate that ADEVs can deliver miRNA
cargoes to neurons and, in turn, these cargoes can induce functional changes in gene expression in the recipient

neurons.

Similarly, a 2019 study investigated the effects of HIV infection and heroin use on inflammation-associated EV
miRNA 1181 This study found that HIV-infected heroin users had significantly upregulated levels of miR-146a, miR-
126, miR-21, and miR-let-7a, all of which are implicated in neuroinflammation. Interestingly, only the HIV-infected
heroin-using group displayed this upregulation; neither uninfected heroin users nor heroin-free HIV-infected
patients displayed significant levels of these miRNAs. Further, several members of the let-7 family of miRNA were
significantly upregulated within the group of heroin users without HIV infection, namely miRNA-let-7a, -7d, -7e, -1,
-79, and -7i. The let-7 family is highly conserved across animal species, including humans and mice, and is known
to promote cell differentiation 7. Interestingly, another group noted that morphine significantly increased
expression levels of miRNA-let-7a, 7c, and 7g L. These results further indicate the importance of understanding

the implications of the combination of HIV infection and opioid use as it relates to EV miRNA cargo.
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As opioids and needle-sharing are associated with increased risk of HIV infection, alcohol also increases the risk of
infection and aggravates HIV replication. Further, alcohol diminishes the adherence to and the efficiency of
antiretroviral therapy (ART), which may further enhance HIV replication. HIV infection is correlated with enhanced
expression of pro-inflammatory cytokines and chemokines, consequently promoting the pathogenesis of HIV [118],
In the search for a prospective biomarker for alcohol-stimulated toxicity in HIV patients, Kodidela et al. found that
HIV-positive alcohol users had substantially lower levels of EV IL-1ra compared to HIV-negative alcohol drinkers.
Additionally, no change in the levels of EV IL-1ra was found in the nondrinker HIV-positive subjects. IL-10 was also
present in EVs of HIV-positive drinkers. Furthermore, compared to plasma, the percentages of TNF-a, IL-8, and IL-
1ra packaged in the EVs isolated from HIV-positive alcohol users were 15%, 10%, and 10%, respectively 18],

In addition to cytokine EV cargo changes, hemopexin (HPX), a protein that binds to free heme, was found in
reduced concentrations in the EVs of HIV-positive drinkers, possibly aggravating or contributing to neuroAIDS in
those patients 119 Although unchanged in alcohol drinkers and HIV patients, HPX was substantially
downregulated in alcohol users with HIV. HPX may possess an anti-inflammatory function through the negative
regulation of TNF-a and IL-6 secretion by macrophages. Additionally, HPX is an extracellular antioxidant, and its
diminished level in the EVs of HIV-positive drinkers is consistent with its protective role against alcohol-induced
oxidative stress. Additionally, Kodidela et al. found that GFAP expression was significantly enhanced in plasma
EVs obtained from HIV-positive subjects and alcohol users, suggesting increased astrocyte activation in those
subjects 2291 Exploring EV cargo alterations, such as those listed in Table 1, may allow the field to progress

towards diagnosis of and remedies for alcohol-induced toxicity in HIV patients.

Table 1. Differentially regulated EV cargoes identified in studies of substance abuse and HIV.

Cargo Condition EV Source Model Up/DownReference
MIRNA 29b Morphine + HIV Astrocyte Rat primary Up 115
cultures

21 Heroin + HIV Plasma Human Up (116]

146a Heroin + HIV Plasma Human Up (116][121]
126 Heroin + HIV Plasma Human Up [116]
let-7a Heroin + HIV Plasma Human Up [116]
let-7b Alcohol Microglia BV2 cell line Up [122]
276 Metha(tagwrth;\mine Plasma Rat Up (123]
218b METH Plasma Rat Up 123
194-5p METH Plasma Rat Up [123]
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Cargo Condition EV Source Model Up/DownReference
152-3p METH Plasma Rat Up [123]
25 METH Plasma Rat Down [123]
276 Ketamine Plasma Rat Down [123]
22-3p METHY/Bipolar Plasma Rat Up [123][124]

Bronchoalveolar

P [125]
107 Nicotine lavage fluid (BLF) Human Up
126 Nicotine BLF Human Up [125]
19a-3p Nicotine BLF Human Up [125]
200a-3p Nicotine BLF Human Up [225]
o RAW264.7 196
21-3p Nicotine Macrophage cell line Up
21 SIvV Brain Monkey Up 102
Mouse
182 Alcohol Astrocyte primary Up 121
culture
Mouse
200b Alcohol Astrocyte primary Down 121
culture
155 Alcohol Microglia BV2 cell line Up [122]
Fetal neural stem 127
140-3p Alcohol cells (NSC) Mouse Up
15b-3p Alcohol fNSC Mouse Up [127]
340-5p Alcohol fNSC Mouse Up [127]
674-5p Alcohol fNSC Mouse Up [127]
. Monomac-1 109
130a HIV/Cocaine Monocytes . Up
cell line
IncRNA MALAT1 Nicotine BLF Human Up 125
HOTAIR Nicotine BLF Human Up [225]
HOTTIP Nicotine BLF Human Up 125
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Cargo Condition EV Source Model Up/DownReference

Afgf Nicotine BLF Human Up (125]
ATB Nicotine BLF Human Up (125]
TCF7 Nicotine BLF Human Up 125
F(/DA\);?Z— Nicotine BLF Human Up L
Hoi\‘(gll_ Nicotine BLF Human Up 125
PCAF1 Nicotine BLF Human Up (125]
BCAR4 Nicotine BLF Human Up (125]
EGFR Nicotine BLF Human Up [125]
KRAS Nicotine BLF Human Up (125]
ALK Nicotine BLF Human Up [125]
MET Nicotine BLF Human Up (125]
mRNA LKB1 Nicotine BLF Human Up [125]
BRAF Nicotine BLF Human Up (125]
PIK3CA Nicotine BLF Human Up [125]
RET Nicotine BLF Human Up 125
ROS1 Nicotine BLF Human Up [125]

130a HIV/Cocaine Monocytes; M22|c|) rI?ne;c.-l U (109][118]

Plasma ' P
Human
IL6/IL-8 Smoking + HIV Plasma Human Up [118]
Cytokines IL-6 Smoking + HIV Plasma Human Up [118]
IL-1ra Alcohol/ Nicotine + Plasma S— Up 18]
HIV
IL-10 Alcohol/Nicotine Plasma S — Up (18]
HIV
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Cargo Condition EV Source Model Up/DownReference
beta (AB) HIV Brain Human Up
GFAP HIV + Alcohol Plasma Human Up 120
L1CAM Nicotine Plasma Human Up [120]
a- METH Neuroblastoma SH-SY5Y cell Up 128
synuclein cells line
Mouse
TLR4 Alcohol Astrocyte primary Up 121
culture
Mouse
NFkB-p65 Alcohol Astrocyte primary Up 121
culture
Mouse
IL-1R Alcohol Astrocyte primary Up [121]
culture
Proteins
Mouse
Caspase-1 Alcohol Astrocyte primary Up [121]
culture
CPM HIV Plasma Human Up [129]
CDH3 HIV Plasma Human Up [129]
HPX HIV + alcohol Plasma Human Down [L19]
BAGE Nicotine Lung Human Up [125]
PD-L1 Nicotine Lung Human Up [125]
PRDX6 HIV + Nicotine Macrophage U937 cells Down [111]
Catalase HIV + Nicotine Macrophage U937 cells Down [111]
CSF2RA HIV Plasma Human Up [129]
MANF HIV Plasma Human Up 129
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