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Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop
species. With the current trajectory of global climate change, low temperatures are becoming more frequent and
can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most
popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene
regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly

understood.
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| 1. ICE-CBF-COR Signaling Pathway in Cold Stress

ICE genes encode a class of MYC-like bHLH transcriptional factors upstream of the cold signaling pathway @XI. The
C-terminal regions of ICE have highly conserved regions for specific interactions with downstream cold regulatory
genes WERIBIAIL The homologs of ICE have been identified as TalCE41 and TalCE87 in wheat (Figure 1).
Overexpression of TalCE41 or TalCE87 in Arabidopsis enhanced cold tolerance, suggesting the significance of ICE
homologs in cold stress response B, HOS1 (HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1), an
E3 ubiquitin ligase, reduces the stability of ICE1 protein by ubiquitination under cold stress €. In addition, the
stability of ICE1 protein is enhanced by SUMO E3 ligase SIZ1 (SAP and Miz) through sumoylation in response to
cold stress . ICE1 is phosphorylated by the cold-activated protein kinase OPEN STOMATA 1 (OST1), resulting in
weakened interaction between ICE1 and HOS1 to increase the stability of ICE1 under cold stress 8. Furthermore,
the stability of OsICEL is up-regulated by OsMPK3 (MAP KINASE 3) through phosphorylation in rice in response to
cold stress 2. These results indicate that the posttranslational modification of ICE1 is crucial for its role in response
to cold stress. However, whether TalCEs have similar regulatory mechanisms in wheat responses to cold stress

needs further study.
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Figure 1. ICE-CBF-COR signaling pathway plays a vital role in wheat. Cold stress alters the fluidity of plasma

membrane and activates protein kinases.

CBFs (CBF1, CBF2, and CBF3), which belong to the AP2/ERF multi-gene family, can be activated by ICE in the
cold signaling pathway of plants W9 CBFs are key components for increasing the cold tolerance of plants 111112
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(131 The overexpression of CBFs in rice, maize, barley, wheat, and other plant species significantly enhances the
cold tolerance of transgenic plants L4678 However, the cbfs triple mutant in Arabidopsis show reduced
cold tolerance and larger biomass than wild type 2. These results indicate CBFs may act to balance cold
tolerance and plant growth. However, whether CBFs are important regulators of growth and cold tolerance to
enhance the biomass of wheat requires further study. Several CBF genes have been characterized
in Triticeae species, including 37 genes from hexaploid wheat 22, 20 genes from barley (13!, 13 genes from Triticum
monococcum 211, 11 genes from rye 22, ten genes from durum wheat 23], ten genes from Aegilops biuncialis 2,
four genes from Brachypodium distachyon 2423 and one gene from Aegilops tauschii 29, TaCBF14 and
TaCBF15, two wheat CBF transcription factors, play significant roles in cold stress response (Figure 1) 17,
Overexpression of TaCBF14 or TaCBF15 in barley enhances the expression of Hv*COR14b, a cold-regulated gene
in barley, increasing cold tolerance 7. Additionally, T. aestivum ABIOTIC STRESS-INDUCED DNA BINDING
FACTOR a (TaAIDFa) is markedly activated by cold stress (26], Overexpression
of TaAIDFa in Arabidopsis increases the transcription of the cold-regulated genes like RD29A and COR15A to

enhance the cold tolerance of transgenic lines 28],

CORs generally refer to the protective substances encoded by cold-regulated genes. The protective substances
such as osmolytes and cryoprotective proteins accumulate to facilitate cold acclimation and freezing tolerance 27
(28] CBFs are known to bind to the C-REPEAT/DEHYDRATION RESPONSIVE ELEMENT (CRT/DRE) sequence
(TACCGCAT) in the promoters of COR genes for their transcription activation in response to cold stress 2239, The
expression of ABA-dependent COR genes (Wrab15/17/18/19) and ABA-independent COR genes
(WCS19, WCS120, Wcorl4, and Wcorl5) are significantly increased by cold stress in wheat (Figure 1) B, The
expression of DRE-BINDING PROTEIN 1 (TaDREB1), a wheat homolog of Arabidopsis DREB?2, is elevated under
cold stress 22, The transcription of the WHEAT COLD SPECIFIC 120 (WCS120) gene is activated by TaDREB1
and increases cold tolerance in winter wheat 3. The expression of wheat DREB2 (WDREB2), also a wheat
homolog of Arabidopsis DREB?2, is activated by cold B4, The WDREB2 transcription factor directly affects the

expression of wheat COR genes such as Wrab19 in response to cold stress [34],

| 2. Cold Stress Influences Hormonal Responses

Plant hormones (Phytohormones), which function as small molecules to regulate various cellular processes and
work as chemical messengers to communicate cellular activities, are produced in very low concentrations in higher
plants 23, Phytohormones are needed for plants to deal with abiotic stresses, including salinity, drought, and low
temperature, by mediating a wide range of adaptive responses [28l. These phytohormones include auxin, abscisic
acid (ABA), ethylene, cytokinins (CKs), gibberellins (GAs), jasmonic acid (JA), brassinosteroids (BRs), salicylic acid
(SA), and strigolactones (SLs). In recent years, the phytohormone signaling pathway has been investigated by
genetic and biochemical approaches, and a growing body of evidence indicates that the elements in hormonal

signaling pathways contribute to regulating plant cold tolerance 12,

Auxin, a tryptophan derivative most commonly present in the form of indole-3-acetic acid (IAA), plays an essential

role in plant development and cold stress response. The YUCCA genes encode the key rate-limiting enzymes in

https://encyclopedia.pub/entry/23100 3/14



Genetic Mechanisms of Cold Signaling in Wheat | Encyclopedia.pub

the auxin biosynthetic pathway and are involved in the regulation of plant growth and development. The transcript
levels of OsYUCCAs are strongly induced by low temperatures; however, the expression of IAA catabolism-related
genes, Oryza sativa GRETCHEN HAGENs (OsGHSs), is down-regulated, resulting in significantly increased I1AA
content in rice under cold stress (Table 1) 7. In colder/ambient temperatures, CLAVATA (CLV) peptide signaling
promotes flower development by stimulating auxin-dependent growth. In contrast, at higher
temperatures, YUCCA genes are activated to maintain flower development bypass CLV signaling [B8I3349] There
are 15 genes among 63 TaYUCCAs that are induced by drought and heat stress in wheat, though it is unclear
whether the expression of these genes is regulated by cold stress. Arabidopsis AUXIN RESPONSE
FACTOR (ARF) genes, which regulate the expression of auxin-responsive genes by binding to the auxin response
element in their promoters, are up-regulated during cold acclimation (Table 1) 1. |n wheat, 46 genes from

69 TaARFs are also up-regulated in response to cold stress (Table 1) [42],

Abscisic acid (ABA) is the most important phytohormone due to its role in plant adaptation to biotic and abiotic
stresses 43, ABA-deficient mutants in Arabidopsis show defects in freezing tolerance, with the induced expression
of COR genes, suggesting that ABA is involved in cold signaling 4443l Additionally, ABA contents are moderately
decreased after cold treatment [, SUCROSR NON-FERMENTING 1-RELATED PROTEIN KINASE 2s (SnRK2s)
are important protein kinases in ABA signaling, and their role in abiotic and biotic stress signaling has been
extensively characterized in Arabidopsis. The SnRK2 homologs in wheat appear to play a critical role in cold
signaling. PKABAL, the first SnRK2 protein identified in wheat, is rapidly induced in seedlings when ABA levels
increase in response to cold stress [46]  Furthermore, the expression of TaSnRK2.3, TaSnRK2.4,
and TaSnRK2.8 can be induced by cold stress, suggesting that they are essential in cold signal transduction (Table
1) (471481491 Oyerexpression of TaSnRK2.3 or TaSnRK2.8 in Arabidopsis increases cold tolerance, which is due to
the increased expression of cold-responsive genes, and the enhanced accumulation of stress-associated
metabolites such as proline #8. Recent studies have identified 10 SnRK2 homologs in wheat, and the expression
of these genes is induced by cold stress B9, Although ABA and cold signaling are closely related, it is unclear what
the exact role of ABA in regulating plant cold stress responses is. Further work is needed to elucidate the molecular

mechanisms of ABA when regulating cold signaling pathways.

Ethylene, a gaseous plant hormone, is important in various cellular and developmental processes, as well as
during abiotic and biotic stress responses BLB2IE3G4IESI6] |t js reported that cold stress can alter endogenous
ethylene levels in many plant species. Cold stress inhibits ethylene production in Arabidopsis B4; however, the
ethylene levels are increased in winter rye under cold stress B8 T. aestivum ethylene-responsive factor
1 (TaERF1), the first member of the ERF gene family identified in wheat, is induced by cold stress (Table 1).
Additionally, TaERF1 overexpression can activate COR genes and improve freezing tolerance in
transgenic Arabidopsis 59, Pathogen-induced ethylene response factor 1 (TaPIE1) in wheat positively regulates
freezing stresses by activating cold-regulated genes downstream of the ethylene signaling pathway and by

modulating related physiological traits (Table 1) (62,

Gibberellins (GAs) play vital roles in abiotic stress response and adaptation. DELLA proteins are master regulators

of GA-responsive growth and development 81, Cold stress activates the expression of GA 2-oxidase genes to
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reduce the content of GA, resulting in the enhanced accumulation of DELLA proteins 2. It is reported that
overexpression of CBFs reduces the bioactive GA levels to suppress plant growth and flowering. CBF1-
overexpression plants exhibit dwarfism and late-flowering phenotypes due to limited accumulation of bioactive GA
(621 Additionally, the cbfs mutants display impaired cold tolerance and larger architecture than the wild type after
cold acclimation 2283 These results indicate that both the content and signal components of GA are related to
cold signaling and CBFs may be associated with GA signaling to balance low-temperature adaption and growth.
DELLAs act early in the cold signaling pathway as regulators of GROWTH REGULATORY FACTORs (GRFs).
Cold-induced CBF genes are decreased in GRF5-overexpression lines, indicating that GRFs can
repress CBF expression under cold stress (Table 1) 4. Overexpression of SLENDER RICE 1 (SLR1), a gene that
encodes the rice DELLA protein, enhances chilling tolerance. When rice seedlings are subjected to chilling stress,
the cold-induced SLR1 (Table 1) releases the repressive effect of OsGRF6 on OsGA2ox1. The
increased OsGA2o0x1 expression then decreases the active GA levels to enhance rice chilling tolerance 2. Rht-
B1b and Rht-D1b, the most important and common semi-dwarfing genes, encode GA-insensitive forms of DELLA
proteins that likely have a reduced affinity for the GA receptor in wheat 8. It has been reported that the Rht-
Bl1b and Rht-D1b mutant alleles are not responsive to GA at warmer temperatures but are responsive at colder
temperatures (Table 1) (67,

The phytohormone jasmonic acid (JA) and its methyl ester, methyl jasmonate (MJ), act as signaling molecules in
response to environmental stimuli. Cold stress rapidly increases endogenous JA levels by up-regulating the
expression of JA biosynthesis genes, such as LIPOXYGENASE 1 (LOX1), ALLENE OXIDE SYNTHASE
1 (AOS1), ALLENE OXIDE CYCLASE 1 (AOCl1), JASMONATE RESISTANT 1 (JARI1)
in Arabidopsis and OsLOX2, OsAOS, OsAOC, Oryza sativa 12-OXOPHYTODIENOATE REDUCTASE
1 (OsOPR1) in rice (Table 1) B468 The accumulation of JA induced by cold stress is due to the repression of
ICE1 by JASMONATE ZIM-DOMAIN 1/4 (JAZ1/4), repressors of jasmonate signaling, resulting in the induction
of CBFs expression in Arabidopsis 88, Wheat TaJAZ genes are up-regulated in response to low temperatures
(Table 1) 62, Additionally, endogenous JA levels increase under cold stress in wheat 9. Exogenous MJ treatment
tends to up-regulate of the transcription of COR genes, such as WCS19 and WCS120, and increase the activity of
superoxide dismutase (SOD) and peroxidase (PO) to promote wheat cold tolerance 72, Rice HAN1 (“han”
means “chilling” in Chinese), which functions as an oxidase to reduce the accumulation of the active to inactive,
decreases the expression of CBF/DREBIs in rice under cold stress [3l. Arabidopsis OPR3 is one of the major
players in the JA biosynthesis pathway. Transgenic wheat plants with AtOPR3-overexpression have increased the

accumulation of JA and improved cold tolerance [Z4],

Brassinosteroids (BRs) play a vital role in plant development and stress tolerance. COR gene expression and cold
tolerance in Arabidopsis are increased by exogenous BR treatment [/2l. Exogenous BR treatment promotes growth
recovery of maize seedlings following chilling treatment [Z8 and increases cold tolerance in winter rye and winter
wheat [778 BRASSINOSTEROID INSENSITIVE 2 (BIN2) negatively regulates the freezing tolerance
in Arabidopsis 12, Knockout mutants of Oryza sativa GLYCOGEN SYNTHASE KINASE 3-LIKE GENE
1 (OsGSK1), an ortholog of Arabidopsis BIN2, show enhanced cold tolerance (Table 1) Y. The expression of T.
aestivum SHAGGY KINASE 5 (TaSK5), an abiotic stress-inducible GSK3/SHAGGY-like kinase in wheat, is induced
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at the early stages of cold acclimation (Table 1) Bl The BRASSINOSTEROID-INSENSITIVE 1 (BRI1) encodes a
transmembrane receptor kinase as a BR receptor. Its mutation results in defective BR signaling and increases cold
stress tolerance in Arabidopsis (Table 1) [2  The enhanced expression of its wheat
homologous TaBRI1 in Arabidopsis leads to better cold tolerance than the wild-type plants by maintaining
membrane integrity [£2l. Furthermore, overexpression of TaBRI1 in Arabidopsis and the ortholog of BRI1 in rice or

barley increases the silique size and seed yield [B4183],

Table 1. List of phytohormones in response to cold stress.

Regulated
Item Gene Function of Gene by Cold Reference
Stress
Important gene in Auxin/IPA Up-
OsYUCCAZ2/3/6/7 (indole-3-pyruvic acid) P 37]
. . regulated
biosynthesis
Auxin/IAA (indole-3-acetic Down-
OsGH3-1/2/5/6/11 acid) catabolism-related 27
. regulated
Auxin genes
ARFs Regulate the expression of Up- [41]
auxin-responsive genes regulated
TaARES Regulate the expression of Up- [42]
auxin-responsive genes regulated
Important serine/threonine Up-
ABA TaSnRK2.3/2.4/2.8 protein kinase in ABA P (474811491
. . regulated
signaling network
A member of the ethylene
response factor subfamily of Up- [59]
TaERF1 ERF/AP2 transcription factor  regulated
Ethylene family
Pathogen-induced ethylene Up-
TaPIE1 response factor to active P [60]
regulated
stress-related genes
Gibberellin Growth regulating factor Up-
GRF5 encoding transcription P [64]
: regulated
activator.
A gene that encodes the rice Up-
SLR1 DELLA protein to . uf;te g (651
active OsGA20x1 expression g
Rht-B1b, The most important and Up- [67]
Rht-D1b widely used semi-dwarfing regulated
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Regulated
Item Gene Function of Gene by Cold Reference
Stress
genes
LOX1, AOS1, AOC1, JARI JA biosynthesis genes Jp- (37
in Arabidopsis regulated
. . . . A Up- [68]
Jasmonic acid OsLOX2, OsAOS, OsAOC, OsOPR1  JA biosynthesis genes in rice regulated
TaJAZS The repres§ors gf jasmonate Up- [69]
signaling regulated
: Up- [89]
OsGSK1 BR negative regulator
regulated
. . An abiotic stress- Up- [81]
Brassinosteroids Tasks inducible GSK3 in wheat regulated
TaBRI1 BR receptor Up- (2]
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