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Nanosecond Pulsed Electric Field (nsPEF) is an electrostimulation technique first developed in 1995; nsPEF

requires the delivery of a series of pulses of high electric fields in the order of nanoseconds into biological tissues

or cells. They primary effects in cells is the formation of membrane nanopores and the activation of ionic channels,

leading to an incremental increase in cytoplasmic Ca2+ concentration, which triggers a signaling cascade

producing a variety of effects: from apoptosis up to cell differentiation and proliferation. Further, nsPEF may affect

organelles, making nsPEF a unique tool to manipulate and study cells. This technique is exploited in a broad

spectrum of applications, such as: sterilization in the food industry, seed germination, anti-parasitic effects, wound

healing, increased immune response, activation of neurons and myocites, cell proliferation, cellular phenotype

manipulation, modulation of gene expression, and as a novel cancer treatment.
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1. A Brief History on the Development of Electric
Pulses Technology

The use of electricity in humans can be traced back to the 18th century, when tissue damage was observed after

the application of electric fields . Despite the occurrence of lesions on the skin of humans and animals after

exposure to electric sparks, the mechanism of action was far from being understood. Much latter, circa 1982,

Neumann et al. achieved the first DNA transfection into cells  by applying a protocol including an electric field of 8

kV/cm for 5 μs, inducing a phenomenon in the cell membrane they termed electroporation. Almost a decade later,

Pakhomov et al. demonstrated that the application of electric fields on cells creates water-filled lipid nanopores

forming a stable, ion channel-like conduction pathway in the cell membrane . Denoting its appropriateness, the

definition of electroporation has remained intact for over 30 years: “electroporation is the transient loss of semi-

permeability of cell membranes under the application of electric pulses, leading to ion leakage, the escape of

metabolites, and increased cell-uptake of drugs, molecular probes, and DNA” . Since its remote origins, this

technology is nowadays widely used for several applications other than DNA transfection, such as

electrochemotherapy , tissue ablation , extraction of chemical compounds , and microbial inactivation

for food preservation , among others. The next significant step along the historical evolution of the application of

electric pulses to biological systems occurred in 1995, when Schoenbach et al. developed a technique to generate

high intensity nano-pulsed electric fields, on the order of 6.45 kV/cm with a duration ∼700 ns, to treat natural water
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used in industrial cooling systems . This technique is nowadays known by the academic community either as

nanosecond Pulsed Electric Field (nsPEF) or Nano Pulse Stimulation (NPS). Later on, Schoenbach started a

longstanding collaboration with Stephen J. Beebe; together they pioneered the nsPEF field, studying systematically

its effects in cells through both theoretical and experimental approaches, giving this technique a new spectrum of

applicability. By stepping into the sub-nanosecond realm, inspired by a note from Carl E. Baum in 2005 and later

published in 2007 , Heeren et al. used an impulse radiating antenna (IRA) instead of electrodes to deliver an

electric pulse with a peak amplitude of about 250 kV and with a pulse-width of ∼600 ps . This development

added two main advantages to the field: the capability of delivering an electric pulse in the order of picoseconds,

and the ability to target deeper body tissues, allowing the application of nsPEF in vivo. Figure 1 summarizes the

main events through time in the development of nsPEF technology.

Figure 1. Timeline of main events in the development of electric pulse technology. The first application of electric

pulses was recorded in 1754 with the experiments performed by J. A. Nollet. Two centuries later, in 1982, E.

Neumann et al.  coined the term electroporation to describe the use of electric pulses to create membrane pores

allowing the insertion of genetic material into cells. Afterwards, in 1995, Schoenbach et al.  developed the first

nsPEF technology to prevent biofouling of cooling systems. Lately, the construction of an IRA in 2007 by Heeren et

al. , allowed the application of sub-nanosecond pulses.

2. nsPEF Applications

2.1. In Human Health

Activation of excitable cells:
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Cardiac cells: nsPEF (10–80 kV/cm, 4 ns, 1–20 pulses with 200/400/600 ms intervals) can indirectly lead to

cardiac cell excitation. Of note, these results challenge the concept of chronaxie: minimum time required for an

electric current to double the strength of the rheobase in order to stimulate a muscle or a neuron. The use of

nsPEF technology to excite cardiac cells and mobilize intracellular Ca2+ may prove valuable for cardiac pacing

and defibrillation . For other related studies see .

Neurons: nsPEF (27.8 kV/cm, 10 ns, single pulse) was sufficient to initiate action potentials. The observed

effect was repeatable and stable. These results highlight the potential use of ultrashort pulsed electric fields for

stimulation of subcortical structures and suggest they may be used as a wireless alternative for deep brain

stimulation . For other related studies see .

Phenotype manipulation:

Differentiation: nsPEF (1.5–25 kV/cm, 300 ns, 5 pulses) can induce proliferation and myotubule maturation or

nodule formation in myoblasts and osteoblasts, respectively. Myoblasts were isolated from hind-limb skeletal

muscle of four-week-old mice Pten , and primary human osteoblasts were obtained from a vendor

(Sciencell ) .

        Dedifferentiation: nsPEF (10–20 kV/cm, 100 ns pulse) induces dedifferentiation partially through transient

activation of the wnt/β–catenin signaling pathway in porcine chondrocytes .

Gene expression: nsPEF (20 kVcm, 80 ns, various combinations of pulses) dramatically elevated c-Jun and c-

Fos mRNA levels, which correlated with the observation of c-Jun N-terminal kinase (JNK) pathway activation in

HeLa S3 . For related studies see .

ntiparasitic: Cystic echinococcosis is a widely endemic helminthic disease caused by infection with

metacestodes (larval stage) of the Echinococcus granulosus tapeworm. Application of nsPEF (21 KV/cm, 300

ns, 100 pulses) caused a significant increase in the death rate of protoscolices (future heads of the adult

worms) . For related studies see .

Wound healing: nsPEF (30 kV/cm, 300 ns) induced platelet rich plasma aggregation and platelet gel formation.

These gels are applied to soft and hard tissue wounds, where they enhance healing . For other related

studies see .

Immune response: Using in vivo experiments, nsPEF (15 kV, 100 ns, 400 pulses) induced translocation of

calreticulin in rat tumor cell-surfaces, a molecular pattern associated with damage that is indicative of

immunogenic cell death (ICD). The nsPEF also triggered CD8-dependent inhibition of secondary tumor growth,

concluded by comparing the tumor size using rats depleted of CD8 cytotoxic T-cells under the same nsPEF

treatment. The first group showed an average size of only 3% of the primary tumor size compared with the 54%

shown by the CD8 -depleted rats. Additionally, with immunohistochemistry it was observed that CD8+ T-cells

were highly enriched in the first group. Furthermore, it was shown that vaccinating rats with isogenic tumor cells

(MCA205 fibrosarcoma cell line) treated with nsPEF (50 kV, 100 ns, 500 pulses) stimulates an immune
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response that inhibits the growth of secondary tumors in a CD8 -dependent manner . This work opens the

door to the fabrication of cell-based vaccines using nsPEF stimulation to promote an improved immune

response. For other related studies reporting tumor ablation through an antitumor immune response using

nsPEF see .

Cancer: This is by far the most-studied nsPEF application, with 46 in vitro studies up to 2016  and over 100

so far. Recently, preclinical animal studies have demonstrated that nsPEF can induce local and systemic

CD8+T-cell mediated adaptive immune response against tumors . In clinical trials, nsPEF proved to be a

safe and effective therapy against basal cell carcinoma . There are other novel techniques to combat

cancer that also use electric fields, known as electrochemotherapy , irreversible electroporation , and

electro-gene therapy . Electrochemotherapy and electro-gene therapy use electroporation to achieve the anti-

tumoral effect of other agents. In irreversible electroporation, cytoplasmic membranes of tumor cells cannot

recover from permeabilization, causing cell death mainly by necrosis. Unlike the just mentioned electro-

technique, nsPEF is cell-dependent. A possible explanation for this may be related to apoptosis (programmed

cell death type 1 ), which is a tightly controlled cell process and different in each cell type . Thus, if nsPEF

induces apoptosis, as seems to be the case, it is expected to exhibit cell-dependent responses. This makes

nsPEF an extraordinary tool, with specific responses based on tuning the intensity, duration, and number of

pulses. There are several examples of cell dependence and nsPEF. Stacey et al. in 2002 demonstrated that

exposing cancer cells to nsPEF with 60 kV/cm could induce DNA damage . Beebe et al. in 2002 studied the

antitumor effects of nsPEF on Jurkat cells, with pulses at 60, 150, and 300 kV/cm . Xinh ua Chen et al. in

2012 applied nsPEF with 900 pulses at 68 kV/cm to ablate hepatocellular carcinoma . Nuccitelli et al. in 2013

inhibited human pancreatic carcinoma using 100 pulses of 100 ns duration and 30 kV/cm . More importantly

for nsPEF as cancer treatment, tumor cells are more sensitive to nsPEF than normal cells . 

2.2. Industrial

Cell proliferation: nsPEF (10 kV/cm, 100 ns) can increase Arthrospira platensis SAG 21.99 (a cyanobacteria)

cell growth after repeated pulses in the exponential growth phase. The effect was most pronounced five days

after treatment. Treatments with nsPEF might improve sustainable and economical microalgae-based

biorefineries . For other studies see .

Fermentation industry: nsPEF (15 kV/cm, 100 ns, 20 pulse) increased avermectin (anthelmintic and

insecticidal agent) production in Streptomyces avermitilis by 42% and reduced the time needed for reaching a

plateau in the fermentation process from 5 to 7 days . For other related studies see .

Food industry: Microalgae are a novel food ingredient of increasing interest as they can be grown on non-

arable lands and fixates CO when grown photoautotrophically. Treatment with nsPEF (5–100 kV/cm, 2–100 ns)

reduced total bacterial contamination >log in Chlorella vulgaris cultures without compromising the microalgae.

For related studies see .
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Seed germination: nsPEF (10–30 kV/cm, 100 ns, 20 pulses) application significantly affected seed germination

and pre-growth of Haloxylon ammodendron. This is probably due to the exogenous and endogenous NO

generated in the nsPEF seed-treatment system . For related studies see .
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