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The emergence and rapid development of deep learning, specifically transformer-based architectures and attention

mechanisms, have had transformative implications across several domains, including bioinformatics and genome data

analysis. The analogous nature of genome sequences to language texts has enabled the application of techniques that

have exhibited success in fields ranging from natural language processing to genomic data. 
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1. Introduction

The revolution of deep learning methodologies has invigorated the field of bioinformatics and genome data analysis,

establishing a foundation for ground-breaking advancements and novel insights . Recently, the development

and application of transformer-based architectures and attention mechanisms have demonstrated superior performance

and capabilities in handling the inherent complexity of genome data. Deep learning techniques, particularly those utilizing

transformer architectures and attention mechanisms, have shown remarkable success in various domains such as natural

language processing (NLP)  and computer vision . These accomplishments have motivated their rapid adoption

into bioinformatics, given the similar nature of genome sequences to language texts. Genome sequences can be

interpreted as the language of biology, and thus, tools proficient in handling language data can potentially decipher the

hidden patterns within these sequences.

The attention mechanism, first introduced in sequence-to-sequence models , has revolutionized how deep learning

models handle and interpret data . This technique was designed to circumvent the limitations of

traditional recurrent models by providing a mechanism to attend to different parts of the input sequence when generating

the output. In the context of genome data, this implies the ability to consider different genomic regions and their relations

dynamically during the interpretation process. The attention mechanism computes a weighted sum of input features,

where the weights, also known as attention scores, are dynamically determined based on the input data. This mechanism

allows the model to focus more on essential or relevant features and less on irrelevant or less important ones.

Inspired by the success of attention mechanisms, the transformer model was proposed as a complete shift from the

sequential processing nature of recurrent neural networks (RNNs) and their variants . The transformer model

leverages attention mechanisms to process the input data in parallel, allowing for faster and more efficient computations.

The architecture of the transformer model is composed of a stack of identical transformer modules, each with two sub-

layers: a multi-head self-attention mechanism and a position-wise fully connected feed-forward network. Using this

architecture, transformer models can capture the dependencies between inputs and outputs without regard for their

distance in the sequence.

The potential of transformer-based architectures and attention mechanisms in genome data analysis is vast and largely

unexplored. They present a promising solution to tackle the massive scale and intricate nature of genomic data. The

ability to capture long-range dependencies between genomic positions, consider multiple relevant genomic regions

simultaneously, and adaptively focus on salient features makes these methods uniquely suited for genomic applications.

2. Deep Learning with Transformers and Attention Mechanism

2.1. Conventional Architectures of Deep Learning

In recent years, the field of biomedicine has observed a significant upsurge in the application of machine learning and,

more particularly, deep learning methods. These advanced techniques have been instrumental in unearthing insights from
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complex biomedical datasets, enabling progress in disease diagnosis, drug discovery, and genetic research.

Deep learning, or deep neural networks (DNNs), employs artificial neural networks with multiple layers, a feature that

makes it remarkably capable of learning complex patterns from large datasets . One of the simplest forms of a neural

network is the multilayer perceptron (MLP), which contains an input layer, one or more hidden layers, and an output layer.

MLPs are proficient at handling datasets where inputs and outputs share a linear or non-linear relationship. However, they

are less effective when dealing with spatial or temporal data, a limitation overcome by more sophisticated deep learning

models such as convolutional neural networks (CNNs)  and RNNs .

CNNs are exceptionally efficient at processing spatial data, such as images, due to their ability to capture local

dependencies in data using convolutional layers. In biomedicine, CNNs have proved instrumental in tasks like medical

image analysis and tissue phenotyping.

RNNs, including their advanced variant, long short-term memory (LSTM) networks, are designed to handle sequential

data by incorporating a memory-like mechanism, allowing them to learn from previous inputs in the sequence. This

property makes them valuable in predicting protein sequences or understanding genetic sequences in bioinformatics.

Generative adversarial networks (GANs), a game-changer in the field, consist of two neural networks, the generator and

the discriminator, that compete . This unique architecture enables the generation of new, synthetic

data instances that resemble the training data, a feature that holds promise in drug discovery and personalized medicine.

Several other variants of deep learning techniques also exist. For instance, graph attention leverages the attention

mechanism to weigh the influence of nodes in a graph, playing a crucial role in molecular biology for structure recognition.

Residual networks (ResNets) use shortcut connections to solve the problem of vanishing gradients in deep networks, a

feature that can be valuable in medical image analysis. AdaBoost, a boosting algorithm, works by combining multiple

weak classifiers to create a strong classifier. Seq2Vec is an approach for sequence data processing where the sequence

is converted into a fixed-length vector representation. Finally, variational autoencoders (VAE) are generative models that

can learn a latent representation of the input data, offering significant potential in tasks like anomaly detection or

dimensionality reduction in complex biomedical data.

2.2. Transformers and Attention Mechanism

The transformer model represents a watershed moment in the evolution of deep learning models . Distinct from

conventional sequence transduction models, which typically involve recurrent or convolutional layers, the transformer

model solely harnesses attention mechanisms, setting a new precedent in tasks such as machine translation and natural

language processing (NLP).

The principal component of a transformer model is the attention mechanism, and it comes in two forms: self-attention

(also referred to as intra-attention) and multi-head attention. The attention mechanism’s core function is to model

interactions between different elements in a sequence, thereby capturing the dependencies among them without regard to

their positions in the sequence. In essence, it determines the extent to which to pay attention to various parts of the input

when producing a particular output.

Self-attention mechanisms operate by creating a representation of each element in a sequence that captures the impact

of all other elements in the sequence. This is achieved by computing a score for each pair of elements, applying a

softmax function to obtain weights, and then using these weights to form a weighted sum of the original element

representations. Consequently, it allows each element in the sequence to interact with all other elements, providing a

more holistic picture of the entire sequence.

The multi-head attention mechanism, on the other hand, is essentially multiple self-attention mechanisms, or heads,

operating in parallel. Each head independently computes a different learned linear transformation of the input, and their

outputs are concatenated and linearly transformed to result in the final output. This enables the model to capture various

types of relationships and dependencies in the data.

In addition to the self-attention mechanism, another critical aspect of the transformer architecture is the incorporation of

positional encoding. Given that the model itself is permutation-invariant (i.e., it does not have any inherent notion of the

order of the input elements), there is a necessity for some method to incorporate information about the position of the

elements within the sequence. Positional encoding serves this purpose.

[23]

[24] [25]

[26][27][28][29][30][31][32]

[33]



Positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. These

embeddings are learned or fixed, and their purpose is to inject information about the relative or absolute positions of the

words in the sequence. The addition of positional encodings enables the model to make use of the order of the sequence,

which is critical for understanding structured data like language.

One common approach to positional encoding is to use sine and cosine functions of different frequencies. With this

approach, each dimension of the positional encoding corresponds to a sine or cosine function. These functions have a

wavelength that forms a geometric progression from 2𝜋 to 10,000 × 2𝜋.

One of the key advantages of the transformer model is its ability to handle long-range dependencies in the data, an

aspect where traditional RNNs and CNNs may struggle due to their sequential nature. By allowing all elements in the

sequence to interact simultaneously, transformers alleviate the need for compressing all information into a fixed-size

hidden state, which often leads to information loss in long sequences.

Additionally, transformers also introduce the concept of position encoding to counter the absence of inherent positional

information in attention mechanisms. This is crucial, especially in tasks where the order of the elements carries significant

information.

The transformer’s self-attention mechanism involves three crucial components: the query (Q), key (K), and value (V).

These components originate from the input representations and are created by multiplying the input by the respective

learned weight matrices. Each of these components carries a unique significance in the attention mechanism.

In detail, the query corresponds to the element for which scholars are trying to compute the context-dependent

representation. The key relates to the elements that scholars are comparing the query against to determine the weights.

Finally, the value is the element that gets weighted by the attention score (resulting from the comparison of the query with

the key) to generate the final output.

The self-attention mechanism operates by calculating an attention score for a pair of query and key. It does so by taking

their dot product and then applying a softmax function to ensure that the weights fall into the range of zero and one and

sum to one. This provides a normalized measure of importance, or attention, that the model assigns to each element

when encoding a particular element.

Following the calculation of attention scores, the model computes a weighted sum of the value vectors, where the weights

are given by the attention scores. This operation results in the context-sensitive encoding of each element, where the

context depends on all other elements in the sequence. Such encodings are then used as inputs to the next layer in the

transformer model.

The use of the Q, K, and V matrices allows the model to learn to focus on different aspects of the input data and enables it

to discern which pieces of information are critical when encoding a particular element. As such, the transformer’s attention

mechanism brings a significant degree of flexibility and power to the model, allowing it to handle a wide variety of tasks in

an efficient and effective manner. The structures of the transformer architecture and the attention mechanism are depicted

in Figure 1.



Figure 1. Illustration of the transformer architecture and the attention mechanism. (A) Transformer structure; (B) Attention

mechanism.

3. Transformer Architectures and Attention Mechanisms for Genome Data

3.1. Sequence and Site Prediction

In pre-miRNA prediction, Raad et al.  introduced miRe2e, a deep learning model based on transformers. The model

demonstrated a ten-fold improvement in performance compared to existing algorithms when validated using the human

genome. Similarly, Zeng et al.  introduced 4mCPred-MTL, a multi-task learning model coupled with a transformer for

predicting 4mC sites across multiple species. The model demonstrated a strong feature learning ability, capturing better

characteristics of 4mC sites than existing feature descriptors.

Several studies have leveraged deep learning for RNA–protein binding preference prediction. Shen et al.  developed a

model based on a hierarchical LSTM and attention network which outperformed other methods. Du et al.  proposed a

deep multi-scale attention network (DeepMSA) based on CNNs to predict the sequence-binding preferences of RNA-

binding proteins (RBPs).

An important aspect that distinguishes PrismNet is the application of an attention mechanism that identifies specific RBP-

binding nucleotides computationally. The study found enrichment of structure-changing variants (termed riboSNitches)

among these dynamic RBP-binding sites, potentially offering new insights into genetic diseases associated with

dysregulated RBP bindings. Thus, PrismNet provides a method to access previously inaccessible layers of cell-type-

specific RBP–RNA interactions, potentially contributing to our understanding and treatment of human diseases.

In predicting RNA solvent accessibility, Huang et al.  proposed a sequence-based model using only primary sequence

data. The model employed modified attention layers with different receptive fields to conform to the stem-loop structure of

RNA chains. Fan et al.  proposed a novel computational method called M(2)pred for accurately predicting the solvent

accessibility of RNA. The model utilized a multi-shot neural network with a multi-scale context feature extraction strategy.

To predict transcription factor binding sites, Bhukya et al.  proposed two models, PCLAtt and TranAtt. The model

outperformed other state-of-the-art methods like DeepSEA, DanQ, TBiNet, and DeepATT in the prediction of binding sites

between transcription factors and DNA sequences. Cao et al.  proposed DeepARC, an attention-based hybrid

approach that combines a CNN and an RNN for predicting transcription factor binding sites.

3.2. Gene Expression and Phenotype Prediction

Deep learning models have been extensively employed to predict gene expression and phenotypes, demonstrating

significant improvements over traditional methods. These models have been particularly effective in capturing complex

gene–gene and gene–environment interactions and integrating diverse types of genomic and epigenomic data.

A particularly noteworthy study in gene expression and phenotype prediction is that of Angenent-Mari et al. . Their work

explores the application of DNNs for the prediction of the function of toehold switches, which serve as a vital model in

synthetic biology. These switches, engineered RNA elements, can detect small molecules, proteins, and nucleic acids.

However, the prediction of their behavior has posed a considerable challenge—a situation that Angenent-Mari and

colleagues sought to address through enhanced pattern recognition from deep learning.

The methodology employed by the authors involved the synthesis and characterization of a dataset comprising 91,534

toehold switches, spanning 23 viral genomes and 906 human transcription factors. The DNNs trained on these nucleotide

sequences notably outperformed prior state-of-the-art thermodynamic and kinetic models in the prediction of the toehold

switch function. Further, the authors introduced human-understandable attention-visualizations (VIS4Map) which

facilitated the identification of successful and failure modes. The network architecture comprised MLP, CNN, and LSTM

networks trained on various inputs, including one-hot encoded sequences and rational features. An ensemble MLP model

was also proposed, incorporating both the one-hot encoded sequences and rational features.

The advantages of this method are manifold. The authors leveraged deep learning to predict the function of toehold

switches, a task that had previously presented considerable challenges. The outperformance of prior state-of-the-art

models is a testament to the efficacy of the proposed approach. Furthermore, the inclusion of VIS4Map attention-

visualizations enhances the interpretability of the model, providing valuable insights into the model’s workings and

facilitating the identification of areas of success and those that need improvement. Despite these significant strides, the
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methodology also bears certain limitations. The training process is computationally demanding, necessitating high-

capacity hardware and graphic processing units which may not be accessible to all researchers.

A key area of focus has been the prediction of gene expression based on histone modifications. Lee et al.  developed

Chromoformer, a transformer-based deep learning architecture considering large genomic windows and three-

dimensional chromatin interactions. 

3.3. ncRNA and circRNA Studies

The application of deep learning models, particularly those incorporating transformer architectures and attention

mechanisms, has been extensively explored in the study of non-coding RNAs (ncRNAs) and circular RNAs (circRNAs).

These models have shown promising results in predicting ncRNA-disease associations, lncRNA–protein interactions, and

circRNA-RBP interactions, among other tasks.

Yang et al.  presented a novel computational method called iCircRBP-DHN that leverages a deep hierarchical network

to distinguish circRNA–RBP-binding sites. The core of this approach is a combination of a deep multi-scale residual

network and bidirectional gated recurrent units (BiGRUs) equipped with a self-attention mechanism. This architecture

simultaneously extracts local and global contextual information from circRNA sequences. The study proposed two novel

encoding schemes to enrich the feature representations. The first, KNFP (K-tuple Nucleotide Frequency Pattern), is

designed to capture local contextual features at various scales, effectively addressing the information insufficiency issue

inherent in conventional one-hot representation. The second, CircRNA2Vec, is based on the Doc2Vec algorithm and aims

to capture global contextual features by modeling long-range dependencies in circRNA sequences. This method treats

sequences as a language and maps subsequences (words) into distributed vectors, which contribute to capturing the

semantics and syntax of these sequences. The effectiveness of iCircRBP-DHN was validated on multiple circRNAs and

linear RNAs datasets, and it showed superior performance over state-of-the-art algorithms.

While iCircRBP-DHN exhibits several advantages, it also presents potential limitations. The method’s strengths include its

ability to model both local and global contexts within sequences, its robustness against numerical instability, and its

scalability, demonstrated by the performance on extensive datasets. However, the method’s performance is heavily reliant

on the quality of sequence data and the effectiveness of the CircRNA2Vec and KNFP encoding schemes, which might not

capture all nuances of circRNA–RBP interactions. While the self-attention mechanism can provide some insights into what

the model deems important, it might not provide a full explanation of the reasoning behind the model’s predictions.

3.4. Transcription Process Insights

In recent advancements, deep learning, specifically attention mechanisms and transformer models, have been

significantly employed in decoding the transcription process of genome data. Clauwaert et al. , Park et al. , and Han

et al.  have proposed transformative models centered on transcription factor (TF)-binding site prediction and

characterization.

As one of the specific examples, Yan et al.  introduced an innovative deep learning framework for circRNA–RBP-

binding site discrimination, referred to as iCircRBP-DHN, Integrative Circular RNA–RBP-binding sites Discrimination by

Hierarchical Networks. They addressed common issues with previous computational models, such as poor scalability and

numerical instability, and developed a transformative method that amalgamates local and global contextual information via

deep multi-scale residual network BiGRUs with a self-attention mechanism.

One of the key advantages of this approach is the fusion of two encoding schemes, CircRNA2Vec and the K-tuple

nucleotide frequency pattern, which allows for the representation of different degrees of nucleotide dependencies,

enhancing the discriminative power of feature representations. The robustness and superior performance of this method

were evidenced through extensive testing on 37 circRNA datasets and 31 linear RNA datasets, where it outperformed

other state-of-the-art algorithms.

Another interesting application of deep learning is seen in the study by Feng et al. , where they developed a model,

PEPMAN, that predicts RNA polymerase II pausing sites based on NET-seq data, which are data from a high-throughput

technique used to precisely map and quantify nascent transcriptional activity across the genome. PEPMAN utilized

attention mechanisms to decipher critical sequence features underlying the pausing of Pol II. Their model’s predictions, in

association with various epigenetic features, delivered enlightening insights into the transcription elongation process.
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3.5. Multi-Omics/Modal Tasks

Exploring and integrating multi-omics and multi-modal data are substantial tasks in understanding complex biological

systems. Deep learning methods, particularly attention mechanisms and transformer models, have seen profound

advancements and deployments in this regard. Studies by Gong et al. , Kayikci and Khoshgoftaar , Ye et al. , and

Wang et al.  have extensively utilized such methods for biomedical data classification and disease prediction.

In the study by Kang et al. , a comprehensive ensemble deep learning model for plant miRNA–lncRNA interaction

prediction is proposed, namely PmliPEMG. This method introduces a fusion of complex features, multi-scale convolutional

long short-term memory (ConvLSTM) networks, and attention mechanisms. Complex features, built using non-linear

transformations of sequence and structure features, enhance the sample information at the feature level. By forming a

matrix from the complex feature vector, the ConvLSTM models are used as the base model, which is beneficial due to

their ability to extract and memorize features over time. Notably, the models are trained on three matrices with different

scales, thus enhancing sample information at the scale level.

An attention mechanism layer is incorporated into each base model, assigning different weights to the output of the LSTM

layer. This attentional layer allows the model to focus on crucial information during training. Finally, an ensemble method

based on a greedy fuzzy decision strategy is implemented to integrate the three base models, improving efficiency and

generalization ability. This approach exhibits considerable advantages.

3.6. CRISPR Efficacy and Outcome Prediction

The efficacy and outcome prediction of CRISPR-Cas9 gene editing have significantly improved due to the development of

sophisticated deep learning models. Several studies, including Liu et al. , Wan and Jiang , Xiao et al. , Mathis et

al. , Zhang et al. , and Zhang et al. , have extensively used such models to predict CRISPR-Cas9 editing

outcomes, single guide RNAs (sgRNAs) knockout efficacy, and off-target activities, enhancing the precision of gene

editing technologies.

The research by Zhang et al.  introduced a novel method for predicting on-target and off-target activities of

CRISPR/Cas9 sgRNAs. They proposed two deep learning models, CRISPR-ONT and CRISPR-OFFT, which incorporate

an attention-based CNN to focus on sequence elements most decisive in sgRNA efficacy. These models offer several key

advantages. First, they utilize an embedding layer that applies k-mer encoding to transform sgRNA sequences into

numerical values, allowing the CNN to extract feature maps. This technique has been demonstrated to outperform other

methods in sequential analysis. Second, these models use attention mechanisms to improve both prediction power and

interpretability, focusing on the elements of the input sequence that are the most relevant to the output. This mirrors how

RNA-guide Cas9 nucleases scan the genome, enhancing the realism of the model.

3.7. Gene Regulatory Network Inference

The emergence of deep learning has revolutionized the inference of gene regulatory networks (GRNs) from single-cell

RNA-sequencing (scRNA-seq) data, underscoring the utility of transformative machine learning architectures such as the

attention mechanism and transformers. Prominent studies, including Lin and Ou-Yang , Xu et al. , Feng et al. ,

Ullah and Ben-Hur , and Xie et al. , have utilized these architectures to devise models for GRN inference,

highlighting their superior performance compared to conventional methodologies.

The study by Ullah and Ben-Hur  presented a novel model, SATORI, for the inference of GRNs. SATORI is a Self-

ATtentiOn-based model engineered to detect regulatory element interactions. SATORI leverages the power of deep

learning through an amalgamation of convolutional layers and a self-attention mechanism. The convolutional layers,

assisted by activation and max-pooling, process the input genomic sequences represented through one-hot encoding.

The model further incorporates an optional RNN layer with long short-term memory units for temporal information capture

across the sequence.

The multi-head self-attention layer in SATORI is its most pivotal component, designed to model dependencies within the

input sequence irrespective of their relative distances. This feature enables the model to effectively capture transcription

factor cooperativity. The model is trained and evaluated through a random search algorithm for hyperparameter tuning

and the area under the ROC curve for performance measurement. One of the most distinctive features of SATORI is its

ability to identify interactions between sequence motifs, contributing to its interpretability. It uses integrated gradients to

calculate attribution scores for motifs in a sequence. Changes in these scores after motif mutation can suggest potential

interactions.
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3.8. Disease Prognosis Estimation

Deep learning models with transformer architectures and attention mechanisms have seen significant utilization in

estimating disease prognosis, demonstrating their efficacy in extracting meaningful patterns from complex genomic data.

Among the trailblazing studies in this area include those conducted by Lee , Choi and Lee , Dutta et al. , Xing et

al. , and Meng et al. .

Lee  introduced the Gene Attention Ensemble NETwork (GAENET), a model designed for prognosis estimation of low-

grade glioma (LGG). GAENET incorporated a gene attention mechanism tailored for gene expression data, outperforming

traditional methods and identifying HILS1 as the most significant prognostic gene for LGG. Similarly, Choi and Lee 

proposed Multi-PEN, a deep learning model that utilizes multi-omics and multi-modal schemes for LGG prognosis. The

model incorporated gene attention layers for each data type, such as mRNA and miRNA, to identify prognostic genes,

showing robust performance compared to existing models.

3.9. Gene Expression-Based Classification

The implementation of deep learning models with transformer architectures and attention mechanisms has significantly

improved the classification accuracy based on gene expressions, as presented in numerous studies by Gokhale et al. ,

Beykikhoshk et al. , Manica et al. , and Lee et al. .

Gokhale et al.  put forth GeneViT, a vision transformer method, which is a deep learning architecture that applies the

principles of self-attention and transformer models to visual data for classifying cancerous gene expressions. This

innovative approach started with a dimensionality reduction step using a stacked autoencoder, followed by an improved

DeepInsight algorithm, which is a method to transform non-image data to be used for convolution neural network

architectures, achieving a remarkable performance edge over existing methodologies, as observed from evaluations on

ten benchmark datasets.

3.10. Proteomics

The utilization of deep learning, particularly the incorporation of transformer architectures and attention mechanisms in

proteomics, has led to groundbreaking developments in the prediction of protein functionality, as depicted in the studies by

Hou et al. , Gong et al. , Armenteros et al. , and Littmann et al. .

Hou et al.  constructed iDeepSubMito, a deep neural network model designed for the prediction of protein

submitochondrial localization. This model employed an inventive graph embedding layer that assimilated interactome data

as prior information for prediction. Additionally, an attention layer was incorporated for the integration of various omics

features while considering their interactions. The effectiveness of this model was validated by its outperformance of other

computational methods during cross-validation on two datasets containing proteins from four mitochondrial compartments.

3.11. Cell-Type Identification

In recent studies, the application of transformer architectures and attention mechanisms in deep learning has brought

significant progress to cell-type identification, demonstrating superior performance across various cell types, species, and

sequencing depths. The application of transformer architectures and attention mechanisms in deep learning for cell-type

identification has seen significant advancements, as evidenced in the studies by Song et al. , Feng et al. , Buterez et

al. , and Zhang et al. .

Song et al.  developed TransCluster, a hybrid network structure that leverages linear discriminant analysis and a

modified transformer for enhancing feature learning in single-cell transcriptomic maps. This method outperformed known

techniques on various cell datasets from different human tissues, demonstrating high accuracy and robustness.

3.12. Predicting Drug–Drug Interactions

Recent studies have showcased the remarkable progress in predicting drug–drug interactions (DDIs) through the use of

deep learning models incorporating transformer architecturesmand attention mechanisms, surpassing classical and other

deep learning methods while highlighting significant drug substructures. Deep learning with transformer architectures and

attention mechanisms has significantly advanced the prediction of DDIs. Schwarz et al.  introduced AttentionDDI, a

Siamese self-attention multi-modal neural network that integrates various drug similarity measures derived from drug

characteristics. It demonstrated competitive performance compared to state-of-the-art DDI models on multiple benchmark

datasets. Similarly, Kim et al.  developed DeSIDE-DDI, a framework that incorporates drug-induced gene expression
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signatures for DDI prediction. This model excelled with an AUC of 0.889 and an Area Under the Precision–Recall (AUPR)

of 0.915, surpassing other leading methods in unseen interaction prediction.
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