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The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has

been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most

relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye.

Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the

homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain

cereals. 

abiotic stress  Triticeae  CBF transcription factors  cold acclimation  frost tolerance

drought tolerance

1. Triticeae as Staple Food and Adaptable Crops

The Green Revolution had been able to meet the demand for food, reducing world hunger among the growing

population (from 2.519 billion in 1950 to 4.435 billion in 1980) thanks to an unprecedented increase in crop yield

and agricultural production . New irrigation techniques, massive use of fertilizers and plant protection products,

mechanization, crop breeding, and adoption of improved varieties were the determining factors in the observed

increase in productivity . Cereal crops, in particular, saw significant improvement, with yields tripling despite a

small increase in arable land . However, besides the positive effects, the excessive agricultural intensification

created the conditions for the rise of environmental problems such as pollution, soil degradation, and loss of

genetic diversity . For example, in many breeding programs, genotypes were selected for the high-input

systems driving gene pool erosion, especially for the alleles responsible for adaptation to the environment 

. However, new issues emerged: yield seems to have reached a plateau and a contraction of genetic diversity

has been observed ; as a result, the adaptation to biotic and abiotic stresses of cereal crops has been

reduced . In a scenario where the population is still growing (based on UN estimations, planet Earth

will be populated by 8.5, 9.7, and 10.9 billion people by 2030, 2050, and 2100, respectively ), one of the goals of

the global food production system is to provide higher yields and food quality while reducing, however,

environmental pollution . Furthermore, extreme weather conditions, reduction of arable lands, and increasing

demand of fertilizers and irrigation water are putting the crops cultivation in open fields under stress conditions,

significantly affecting agricultural production on all continents . A novel approach is required to cope with the

climate issue. Crop breeding programs need to develop new genotypes with a higher adaptation to weather

fluctuations  and contribute to global food security .
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The Triticeae tribe, a grass tribe of the Poaceae family that includes cultivated wheats (durum wheat Triticum

turgidum L. ssp. durum Desf., bread wheat Triticum aestivum L.), barley (Hordeum vulgare L.), and rye (Secale

cereale L.), is by far the most important source of energy and nutrients worldwide . For example, wheat and

barley together were the most cultivated herbaceous crops in the world in 2021, with a harvested area of 220 and

48 million hectares and a total grain production of 770 and 145 million tons, respectively . Rye is an important

crop for Northern and Eastern European countries, with a harvested area of 3.5 million hectares and a total

production of 11 million tons . The Triticeae tribe comprises about 350 species, including the so-called minor

cereals such as triticale, spelt emmer, and einkorn wheats, poulard, polish, and khorasan wheats .

Temperate grass species are characterized by winter growth habits (WH) in their natural environments . The

two key traits of WH genotypes are the vernalization requirement and the cold acclimation. Vernalization is defined

as the induction of flowering after prolonged exposure to cold. Moreover, Triticeae are usually classified as long-

day (LD) plants because most varieties flower earlier when exposed to longer days. This mechanism synchronizes

plants to flower after cold, harmful temperatures in the wintertime . The cold acclimation is the ability of the

crop to adapt to cold temperatures and then survive frost events . The winter habit (WH) genotypes are usually

sown in winter due to their higher productivity. In Mediterranean climates, sowing is performed in the autumn to

take advantage of the rainiest seasons, and the plants are harvested during the drier summer. Winter habit is a

limiting factor in the widespread cultivation of Triticeae in environments where winter is too cold to survive or too

warm to satisfy the vernalization requirement . To overcome this limit, spring habit (SH) and facultative habit

(FH) genotypes were selected for their lack of vernalization requirements . SH genotypes are sown in spring,

whereas FH genotypes can be alternatively sown either in autumn or spring. Most SH cultivars are frost-prone and,

due to a shorter crop cycle, may be exposed to drought. For these reasons, in the last few years, FH genotypes

are gaining more and more interest since they show a high level of frost tolerance (FT) and do not require

vernalization . The Triticeae crops are thus adaptable to several environments, ranging from sub-arctic to

tropical climates, allowing their cultivation across a wide geographical area , even if the highest yields are

achieved in temperate regions .

2. C-Repeat Binding Factors and Cluster Organization in
Triticeae

C-repeat binding factors, or dehydration responsive element (CBF/DREB1), are a larger subfamily of transcription

factors that belong to the APETALA2/ethylene-responsive element binding factor (AP2/ERF) protein family and are

induced/activated in response to osmotic stresses such as cold or drought. The AP2/ERF domain binds to the C-

repeat/dehydration responsive elements (CRT/DRE) in the promoter region of a variety of genes involved in the

abiotic stress response, also known as “CBF’s regulon.” These genes protect against the adverse effects of losing

water caused by frost and drought with the biosynthesis of osmoprotectant proteins, carbohydrate metabolism-

related activity, and sugar transport . Among these, cold-regulated genes (COR) are the most important

family, including late embryo abundant proteins (LEA), low-temperature-induced (LTI), cold-inducible (KIN),

responsive to desiccation (RD), early dehydration-inducible (ERD), and the dehydrin (DHN) genes . The
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distinctive element of CBFs within the AP2/ERF family is the specific “CBF signature” flanking the AP2 domain 

.

CBF1 was the first CBF gene isolated and characterized by Stockinger and colleagues in Arabidopsis thaliana .

Subsequently, other important works discovered the CBF family and its role in the model plant  and then in

other 54 genera: 31 dicotyledons, 23 monocotyledons, and 13 woody species . In Poaceae, multiple

elements of the family were isolated and characterized, either in chilling-sensitive (e.g., rice and maize) or frost-

tolerant species (e.g., wheat, barley, and rye) . The CBF genes are characterized by short, mono-exon

coding sequences (average length 700 bp) with no introns . Interestingly, Shi et al.  performed a

phylogenetic analysis and found that the CBF gene structure is remarkably conserved across various species

(monocots/dicots), independently of their degree of frost tolerance. As reported by Campoli et al. and Badawi et al.

, CBF genes are classified into four phylogenetic groups, each with two or more sub-groups. Some elements

of the CBF gene family are scattered along the genome, while others, more frequently, are organized in clusters of

tandemly duplicated genes on the long arm of homoeologous chromosome group 5 of Triticeae . The

cluster of CBF genes has been shown to coincide with a QTL for frost tolerance, namely Frost Resistance 2 (FR-2)

in barley (FR-H2), diploid (FR-A 2) and polyploid wheats (FR-A2 and FR-B2), and rye (FR-R2) . In

Triticeae crops, beside FR-2, part of the phenotypic variation for frost tolerance is attributed to another QTL located

about 25–30 cM apart from FR-2 on the long arm of homoeologous chromosome group 5: Frost Resistance 1 (FR-

1). This locus was identified by Hayes et al. in 1993 and Galiba et al. in 1995  in barley and wheat,

respectively, and reported to co-segregate with VRN-1, the vernalization requirement gene , whose expression

leads the plant to become competent for flowering .

Thirteen TmCBF were described in Triticum monococcum L.; eleven of them were mapped on FR-A 2, while

TmCBF15 and TmCBF18 were mapped on chromosomes 7A  and 6A , respectively . Vágújfalvi et al. 

attributed the locus for FT to chromosome 5A, and subsequently Knox and colleagues  divided the FR-A2 locus

into: proximal (CBF 2, 4, 9, and 17), central (CBF 12, 14, and 15), and distal (CBF 3, 10, 13, and 16).

The genome of hexaploid wheat encodes 65 TaCBFs , 27 of which are paralogs with 1–3 homoeologous A, B,

and D copies . As reported by The International Wheat Genome Sequencing Consortium (IWGSC) , 54

TaCBFs are located on chromosome Group 5: 17 genes on 5A, 19 on 5B, and 18 on 5D chromosomes. Other

TaCBFs are located on homoloegous chromosomes 6 (A, B, and D).

3. Role of the ICE-CBF-COR Pathway in Cold Acclimation

In winter cereals, cold acclimation, also known as “hardening”, has the vital function of protecting the crown and

young leaves from ice damage . Even after a severe stress episode, if the crown and young leaves survive, the

plant maintains the potential to restore from tillering nodes . This peculiarity is linked to the ability of the

meristematic tissue to survive thanks to the physiological phenomenon of cold acclimation . Phenolic

compounds, sugars, soluble proteins, new enzyme isoforms, proline and organic acids, modification of the fatty
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acid composition in the phospholipid membrane, and higher levels of antioxidants are all proactive compounds

connected to the reduction of frost damage .

In winter barley, wheat, and rye, cold acclimation occurs only in the vegetative phase, and it has two different

signaling pathways: abscisic acid or ABA-dependent (ABA pathway) and ABA-independent (also known as the ICE-

CBF-COR pathway) . Although the ABA and CBF signal transmissions were considered distinct from each other,

recent studies suggest a cross-talk between these two pathways .

In short-day conditions, the ICE-CBF-COR pathway is promptly activated after a brief exposure to low, non-harmful

temperatures , and the CBF gene has a pivotal role in the coordination of the acclimation processes . In

Arabidopsis, a marked increase in CBF transcript levels was observed 15 min after cold exposure, followed by up-

regulation of the effector genes about 2 h later . On the other hand, in wheat and barley, an increase in CBF

transcript levels was observed 4–12 h later after the cold exposure . The gene induction relies on a

temperature threshold dependent on the species and occurs in a 10 °C to 12 °C range in winter barley, wheat, and

rye . The result of the ICE-CBF-COR pathway cascade is the activation of the effector genes that modify the

plant metabolism, conferring frost tolerance . The temperature must be below 10 °C for 4–6 weeks in short-day

conditions to complete the adaptive response in Triticeae ; once the process is completed, crops can

withstand freezing at −7/12 °C for barley, −9/18 °C for wheat, and −18/−30 °C for rye .

Interestingly, no receptors receiving the low temperature signal have been identified so far . The ICE-CBF-COR

pathway is activated by an increase in intracellular Ca  concentration by either rigidification of the plasma

membrane or ligand-activated channels. After calcium influx into the cytosol and its binding by Ca-sensors (such as

calmodulins), a signal cascade based on calcium-binding proteins (CBPs) is initiated to target the ICE (inducers of

CBF-gene expression) transcription factors that up-regulate the CBF genes . ICE transcription factors belong

to the MYC family and MYC subfamily of bHLH (basic helix–loop–helix)  and are known as positive CBF

expression regulators, considered to act upstream of the low-temperature signaling pathway .

In addition, temperature variation is not the only environmental stimulus influencing the expression of the CBFs;

also, circadian rhythms and light characteristics (i.e., quality and quantity) have been reported to be involved in

cold acclimation . For example, recent studies showed that the expression of some barley HvCBF genes

(HvCBF2A, HvCBF4B, HvCBF6, and HvCBF14) is regulated by the circadian rhythm and day length . In

warm conditions, CBF genes show high expression late in the afternoon and continue to decrease early in the night

. The peak of expression is 8–12 h after the dawn, either in short- or long-day conditions. However, the

amplitude of the peaks is wider in short-day compared to long-day conditions . This peak does not coincide with

the coolest period of the day, but it may be functional for the preparation of the cell for the subsequent cold of the

night . The circadian clock regulates the expression of several genes. The G-Box-like motifs are necessary for

transcriptional regulation by the circadian pseudo-response regulators binding basic helix–loop–helix transcription

factors . Other environmental stimuli are the light spectra and intensity; several works have elucidated that the

variation of light spectra and light intensity might modulate the expression of CBF genes and also increase frost

tolerance .
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The vernalization process is controlled by three major genes: VRN-1, VRN-2, and VRN-3 . VRN-1 is a

flowering promoter that was shown to be an AP1-like MADS-box transcription factor, whose expression leads the

plant to the transition from the vegetative to the reproductive phase . Moreover, it was also proven to be

involved in cold acclimation and frost tolerance . VRN-2 is a dominant flowering repressor down-regulated by

vernalization treatment and includes two tandem zinc finger-CCT domain genes (ZCCT1 and ZCCT2) .

VRN-3, the main integrator of the photoperiod and vernalization signals that lead to the transition of the apical

meristem , is homologous to the flowering integrator FLOWERING LOCUS T gene in Arabidopsis . Due

to their diploid nature, WH barleys can be considered a model for vernalization in Triticeae crops . VRN-H2 is

expressed in long and neutral day conditions . In autumn, when plants are still in the seedling stages, VRN-H2

is highly expressed and represses the VRN-H3, which is the flowering induction gene . The repression of

VRN-H3 also limits the expression of VRN-H1 . Exposure to cold temperatures activates VRN-H1 and

results in the down-regulation of VRN-H2 and, consequently, the release of VRN-H3 from repression . After

prolonged cold exposure, the expression level of VRN-H1 reaches a threshold necessary to induce the transition

phase, up-regulating VRN-H3, and initiating the flowering process . Exposure to long-day conditions mediated

by the photoperiod genes PPD-H1 and PPD-H2 is also necessary .

The expression of VRN-H1 changes in function of the plant growth habit; as mentioned above, in winter genotypes,

the expression of the recessive vrn-h1 allele is induced by prolonged periods of cold . The quantity of time

under cold and short-day conditions necessary to satisfy the vernalization requirements varies with the

geographical origin of the genotype and the environmental condition, changing from 6 to 10 weeks of temperatures

in a range between 6 °C and 2 °C under short-day conditions . In spring genotype, the dominant Vrn-

h1 allele has a constitutive high expression that rapidly induces the transition . The vernalization in wheat is

more complex compared to barley due to the presence of three homoeologous VRN-A1, VRN-B1, and VRN-D1 loci

mapped on the long arm of chromosome group 5 , with the major effect of VRN-A1 in determining the growth

habit .

The interaction between VRN-1/FR-1 and FR-2 (CBFs) has also been demonstrated ; VRN-H1 can bind

promoter regions of the CBF genes, inducing a reduction of their transcription levels; nevertheless, the mechanism

is still not fully understood .

However, a question remains: how does the ICE-CBF-COR pathway confer frost tolerance?

4. FR-2 in Barley—A Synergistic Action of CNV and
HvCBF14?

The efforts to identify the molecular mechanisms underlying FR-2 in Triticeae crops were based on integration

studies on structural and functional aspects of the locus. Several barley genotypes have been sequenced, and a

pan-genome has been assembled . Thanks to this data, FR-H2 was studied in different frost-prone and tolerant

genotypes to evaluate the CBFs position in the cluster, the variability in the structure, the CBF coding sequences,

and the promoter regions .
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Initially, four HvCBF genes (HvCBF3, HvCBF6, HvCBF9, and HvCBF14) have been selected as candidate genes

due to the presence of homologs in other Triticeae already reported to be involved in cold resistance . Then,

HvCBF14 has emerged as the major candidate for the frost tolerance in barley in several works 

. Two SNP linked to HvCBF14, associated with frost tolerance, were identified by Fricano and colleagues

 in an association analysis of a panel of European cultivars, landraces, and H. spontaneum accessions. Later

on, a correlation between frost tolerance and the same HvCBF14 gene in spring haplotypes was demonstrated by

Guerra et al. , who investigated a panel of 403 accessions with exome sequencing-based allele mining.

Structural variation is recognized as a common feature and evolutionary force of genomes, where copy number

variations (CNV) and resulting gene dosage effects determine a number of traits/phenotypes in plants 

. One of the first clear associations between CNV and phenotype was reported for the boron-toxicity

tolerance in barley . The first indication of the involvement of CNV at the FR-H2 locus and frost tolerance in

Triticeae was reported by Knox et al. . Two HvCBF2 paralogs (HvCBF2A and HvCBF2B) and multiple copies of

the HvCBF2A-HvCBF4B genomic segment were identified in the frost-tolerant genotypes ‘Dicktoo’ and ‘Nure’. On

the other hand, genomic clones of ‘Morex’ and ‘Tremois’ showed only single paralogs of HvCBF4 and HvCBF2.

Results on CNV were confirmed by sequencing the same physical region in the tolerant ‘Nure’  and susceptible

‘Morex’  genotypes, in successive, independent experiments. Francia et al.  and Rizza et al.  confirmed

that frost-resistant varieties of barley were characterized by a high number of copies for the HvCBF2 and HvCBF4

genes and maintained two distinct HvCBF2 paralogs (HvCBF2A and HvCBF2B). In summary, the influence of

structural variation on determining the FR-2 effect remains a long-standing conundrum and leaves an open

question: is the phenotype influenced by the expression of the HvCBF14 gene alone, or are multiple copies of

other CBFs involved? Is the number of copies at the HvCBF2A–HvCBF4B segment relevant for the modulation of

the HvCBF14 expression level and the resulting phenotype?

The influence of the gene dosage (i.e., the pool of transcripts) of a specific CBF on the expression of other

elements of the ICE-CBF-COR pathway was tested/evaluated in two elegant experiments. The overexpression of

HvCBF2 in the spring susceptible cultivar ‘Golden Promise’ resulted in higher transcript levels of COR genes;

HvCOR14B and HvDHN5, already at warm temperatures, were raised strongly at cold temperatures. Moreover,

higher transcription levels of HvCBF12, HvCBF15, and HvCBF16 and greater frost tolerance were observed in

overexpressed lines . According to authors, HvCBF2 may activate target genes at warm temperatures, and

transcript accumulation for some of them is greatly enhanced by cold temperatures.

The influence of CNV at HvCBF2A-HvCBF4B on the expression levels of HvCBF12, HvCBF14, and HvCBF16 was

investigated using the high frost-tolerant variety ‘Admire’ and different descendent genotypes (namely, Missouri

barley—MO B lines) by Dhillon and colleagues . MO B lines harboring a higher number of copies of HvCBF2A-

HvCBF4B had higher expression levels of all three genes under normal growth conditions.

5. FR-2 in Wheats—CBF Cluster Ploidy
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While barley has a diploid genome (2n = 2x = 14, HH) of 5 giga base pairs (Gbp) , tetraploid durum wheat (2n =

4x = 28, AABB) has 12 Gbp , and hexaploid wheat (2n = 6x = 42, AABBDD) has approximately 17 Gbp .

Thereby, FR-2 organization in wheat is more complex compared to barley due to the contribution of one/multiple

homoeologous chromosome regions and redundancy caused by the ploidy level . Wheat exhibits high

variability in frost tolerance traits, given that hexaploid wheat genotypes (AABBDD) exhibit greater frost tolerance

than diploid (AA) and tetraploid genotypes (AABB) .

The first works on CBF/FR-2 in wheat were carried out in mapping populations of einkorn diploid wheat (Triticum

monococcum L.), which is the ancestor of the A genome in hexaploid wheat and is considered a practical model for

the functional genetics of wheat . First expression studies showed the association of CBF

genes at the FR-A 2 with the expression of COR genes and frost tolerance .

TmCBF12, TmCBF14, TmCBF15, and TmCBF16 (central cluster) expression levels were significantly associated

with frost tolerance, measured as regrowth capacity after stress. Moreover, a high-density mapping study

confirmed that TmCBF12, TmCBF14, and TmCBF15 were the candidates for the observed differences .

Thanks to the works carried out on T. monococcum, the number and position of CBF genes in bread wheat were

identified in different works. While in barley, a CNV has never been associated with a central cluster at FR-H2 (see

above), in diploid and polyploid wheat, a lower copy number of CBF14 in the B genome compared to the A and D

genomes was reported .

TaCBF14 and TaCBF15 were associated with increased frost tolerance in doubled haploid (DH) mapping

populations of ‘Norstar’ × ‘Winter Manitou’ and ‘Norstar’ × ‘Cappelle-Desprez’ (all WH genotypes) . Higher

levels of TaCBF14 induced by temperature shift and blue light were reported in winter wheat ‘Cheyenne’ .

Recent studies expanded the investigation of ICE-CBF-COR interconnection with other environmental stimuli with

high-throughput functional analysis . Guo et al.  carried out RNAseq and qPCR analysis in

wheat tissues under different stress conditions, observing the expression of 53 genes belonging to the ICE-CBF-

COR signaling cascade that revealed tissue-specific expression patterns of the ICE, CBF, and COR genes under

different stress conditions. Six genes related to the ICE-CBF-COR pathway (TaCBF11a, TaCBF16b, TaICE1a,

TaICE1d, TaCOR5a, and TaCOR6d.1) were induced by all treatments (drought, heat, drought, and cold). Three

genes, two CBFs and one COR (TaCBF1b, TaCBF4a, and TaCOR3b), were induced specifically by cold.

Zheng et al.  carried out an isoform sequencing experiment at four leaf stages under frost stress (at −6 °C), and

expression levels of TaCBF8a and TaCBF14a decreased, while TaCBF6a, TaCBF9a, TaCBF10a, TaCBF13a, and

TaCBF15a expression levels increased. Recently, Wang et al.  performed a transcriptome analysis during the

vernalization (4 °C) time-course with sampling from one to six weeks. Six CBF genes of the III subgroup were

highly expressed exclusively before vernalization (“steady state” at 22 °C), while 10 CBFs, mainly from the IV

subgroup, were not expressed before and were highly induced by vernalization, reaching the highest level of

expression after three weeks and decreasing after five/six weeks of treatment. Two different homologs of the MYC-
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like bHLH transcription factor ICE were identified in wheat as TaICE41 and TaICE87 , and their overexpression

in Arabidopsis enhanced frost tolerance after hardening. The recent availability of the wheat genome allowed us to

locate three TaICE1 genes on the long arm of homoeologous chromosome group 3; these genes were shown to be

induced by drought and cold treatment . In addition, Wang et al.  reported that TaICE41 was expressed at

extremely high levels after five weeks of vernalization.

6. FR-2 in Rye—Evidence of ICE1 Involvement in the
Tolerance

Compared to other Triticeae crops, rye is uniquely tolerant to biotic and abiotic stresses, showing high yield

potential under marginal conditions . However, it received little attention in terms of breeding efforts and

genomic research due to its limited distribution worldwide. Likewise barley and rye have a diploid genome (2n = 2x

= 14, RR); however, it has not become a reference crop for genomic analysis in the Triticeae tribe due to its

elevated level of allogamy and the fact that the first chromosome-scale assembly of its large 7.9 Gbp genome was

released only recently, in 2021 , showing 92% of repetitive elements .

Investigation of rye genome evolution and chromosome synteny  revealed, as expected, that the chromosome

5R harboring FR-2 and FR-1 loci is entirely collinear with wheat homoeologous chromosome group 5. Initially,

eleven ScCBF genes were isolated in a winter rye genome, and nine of them were mapped on chromosome 5R

with a cluster organization (FR-R2) . Subsequently, Jung and Seo  identified 12 new CBF genes and five

new CBF gene alleles. The genome assembly  reported CNV for 4 members of CBF Group IV between tolerant

and resistant varieties.

Concerning the structure of the locus, FR-R2 haplotyped variation has been associated with different frost

tolerance levels in different rye genotypes .

7. New Frontiers for CBF Genes? CBF Genes in the Drought
Stress Adaptative Response

CBF genes are members of a large protein family of the C-repeat binding factor/Dehydration responsive element-

binding 1 (CBF/DREB1), known to be involved in the growth and development processes and responses to

different environmental stressors (cold, heat, drought, salt, etc.) . CBF genes could thus have in Triticeae a role

in a cross-talk between the cold and drought response pathways, as already reported for Arabidopsis .

The CBF/DREB1 regulon modifies the plant metabolism in conditions of water deficiency, and their activation might

also be triggered by drought conditions in the seedling phase . In several drought-responsive genes, such as

AtRD29A (responsive to desiccation), HvDHN1–HvDHN11 (dehydrin), or AtCOR6.6, a DRE/CRT motif is present in

the promoter regions. When drought conditions occur, the plant reduces its water uptake by closing the stomata,

which also reduces its CO  uptake, which results in a reduction in the photosynthesis and physiological activities.

To cope with drought stress, plants activate several morphological and physiological modifications to conserve
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water and reduce its loss. The molecular response to drought follows a similar pathway to cold acclimation due to

the same trigger of water scarcity, which activates both responses. As already summarized, water deficit activates,

like low temperature stress, two different signaling pathways: ABA-dependent and ABA-independent . The

interaction between CBF genes in hormone-mediated acid abscisic (ABA) pathways has been reported . In

A. thaliana, the ABA-independent pathway is regulated by AtCBF4, which increases the production of a class of

small, highly expressed, and stress-inducible proteins called late embryogenesis abundant (LEA), protecting the

cellular membranes and the cytoskeleton from desiccation . Interestingly, it has been shown in A. thaliana

that ABA-responsive genes contain in the promoter regions both the ABA-response cis-element ABRE/ABF and the

CRT/DRE motif . Overall, drought stress in barley and wheat can have a significant negative impact on plant

growth, yield, and grain quality; however, plants have evolved mechanisms to cope with water scarcity and to

survive in dry environments . Nevertheless, which CBF genes and which pathways are activated have not been

determined yet . In a study of A. thaliana transgenic lines, the overexpression of AtCBF1 and AtCBF3

genes resulted in an increase in drought tolerance . A review of the conservative role of CBF genes throughout

the Poaceae family reported rice OsDREB1A localized in the cluster OsDREB1H, syntenic with the FR-2 locus on

chromosome 5 of Triticeae involved in chilling tolerance . However, few examples of studies of the role of CBF

genes in drought tolerance are available for barley and wheat.

A common phenotypic response observed in transgenic lines overexpressing CBF genes in different crops can be

identified as an increased tolerance to frost and/or drought and modified growth and development, as originally

reported for Arabidopsis . Overexpression of two CBF/DREBs (TaDREB3 and TaCBF5L) in wheat and

barley was reported to lead to an increase in drought and frost tolerance in transgenic barley. Moreover, in

transgenic wheat, the TaCBF5L gene significantly increased the grain yield under severe drought during flowering

. Javadi and colleagues mined available GeneChip microarray data  in order to detect key genes involved in

drought tolerance in barley and identified hub genes from the AP2 and NAC families that might be among the key

TFs that regulate drought-stress response in barley. What is interesting is that HvCBF6 (distal cluster of FR-H2)

was included among the hub genes. In rye, the PEG treatment (drought condition simulation) revealed that there is

a specific type of response to stress among ScCBF genes; most of them were highly responsive to cold stress,

whereas ScCBF2 and ScCBF7b were induced by water deprivation and were almost insensitive to low temperature

. Guo and colleagues  characterized the expression profile of the ICE-CBF-COR pathway in different wheat

tissues under different stress conditions. Authors showed that TaCBF11a, TaCBF16b, TaICE1a, TaICE1d,

TaCOR5a, and TaCOR6d.1 were induced by drought, and the induction level was higher in tolerant genotypes .

The overlapping of cold/frost and drought conditions is a relatively unexpected new form of combination of abiotic

stress, and it usually happens during the late autumn, after sowing, when winter genotypes are in the seedling

phase. The drought stress in the seedling phase induces root architecture modification that might act as a

constitutive resistance mechanism, useful when the stress re-occurs in other phenological phases . As

observed in numerous studies in the past years, CBF overexpression in the model plant Arabidopsis enhances

abiotic stress tolerance but, on the other hand, reduces growth. CBF genes are known to interact with plant

hormones , and the current model of CBF-GA (gibberellic acid) interplay proposes that overexpression of CBFs,

either via cold induction or by transgenic means, stimulates the accumulation of DELLAs. Those growth-repressing

[81]
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proteins act downstream in the GA signaling pathway, leading to stunted growth. As far as the underlying molecular

mechanism is concerned, in warm temperatures, DELLAs interact with JAZs to prevent JAZs binding to ICE1,

leading to its inactivation. In cold temperatures, ICE1 is modified to gain the function for activation of CBF

transcription . Understanding the relationship between CBF genes, GA and DELLA proteins might help to get

an overall picture of the role of CBFs in plant physiology. One of the new frontiers that regard CBF genes is to

evaluate their contribution in the tillering phase, crucial in the growth and development of wheat and barley, as it

directly influences the potential yield and overall productivity of cereal crops . Moreover, in this phase, winter

cereals reach the maximum of their stress tolerance . The main actors in tillering formation are gibberellic

and abscisic acids; moreover, the roles of VRN-1 and VRN-2 and the photoperiod response gene PPD-1 have

been described . All these components interact with CBF genes; however, mechanisms of interaction

are still not clear.
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