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Cancer treatment and pharmaceutical development require targeted treatment and less toxic therapeutic intervention to

achieve real progress against this disease. In this scenario, nanomedicine emerged as a reliable tool to improve drug

pharmacokinetics and to translate to the clinical biologics based on large molecules. However, the ability of body to

recognize foreign objects together with carrier transport heterogeneity derived from the combination of particle physical

and chemical properties, payload and surface modification, make the designing of effective carriers very difficult. In this

scenario, physiologically based pharmacokinetic modeling can help to design the particles and eventually predict their

ability to reach the target and treat the tumor. This effort is performed by scientists with specific expertise and skills and

familiarity with artificial intelligence tools such as advanced software that are not usually in the “cords” of traditional

medical or material researchers. 
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1. Principles of Physiologically Based Pharmacokinetic (PBPK) Modeling
of Nanoparticles

Drug encapsulation into nanocarriers makes it possible to control the pharmacokinetic properties of therapeutics agents,

including their release and circulation half-life, while limiting their interactions with healthy tissues . The PBPK modeling

approach has existed for many years and has been used to describe time-dependent concentration profiles of substances

in various organs of a living system and interspecies scale-up . This approach divides the body into anatomical

compartments, interconnected by body fluid systems. The number and nature of the compartments, as well as the

complexity of PBPK models, are determined depending on the scientific task and physiological characteristics of the

modeled organism. For example, Gilkey et al. considered a five-compartment PBPK model including liver, spleen,

kidneys, plasma, and “other” in accordance with the biodistribution of fluorescently labeled NPs in mice used for the

controlled delivery of dexamethasone in the therapy of acute lymphoblastic leukemia . While to investigate the in silico

effects of NP properties, tumor-related variables, and individual physiological differences on systemic bioavailability,

mononuclear phagocytic system sequestration, tumor delivery, and excretion of NPs in rats, Dogra et al. developed a

tumor-compartment-bearing PBPK model consisting of 12 compartments of interest: brain, heart, lungs, plasma, liver,

spleen, gastrointestinal tract, kidneys, muscle, ‘others’, lymph nodes, and a facultative tumor . Models designed for

primates (including humans) tend to have even more compartments . Thus, Perazzolo et al. investigated a whole-

body PBPK model for the anti-HIV drug-loaded NPs in nonhuman primates . The model describes the uptake of the

injected dose from the subcutaneous site to the adjacent lymphoid depot, passage through the lymph nodes and

throughout the lymphatic network, and its subsequent passage into the blood circulation. For this, the model includes 23

compartments: subcutaneous injection site, two adjacent-to-injection lymphoid tissue compartments, thoracic duct,

compartments of regional lymph node (cervical node, hilar node, axillary node, mesenteric node, inguinal node), vein,

artery, head and neck, lungs, upper body, kidneys, small and large intestines consisting of tissue and mucosa, spleen,

liver, lower body and tail, as well as the rest of the body.

Typically, each compartment in PBPK models can be described in two ways. The first is referred to as permeability-limited

model (also known as the diffusion-limited or membrane-limited model), in which tissue cell membranes are considered as

the main barriers to drug (nanotherapeutic) penetration. The other one is referred to as perfusion-limited model (also

known as the flow-limited model) and considers blood perfusion as the only limiting step for drug (nanotherapeutic)

penetration through the tissue cell membrane . It is generally accepted that the permeability-limited model is

more appropriate for modeling NPs .
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It should be noted that the PBPK modeling techniques for NPs and small molecules could be quite different. Traditional

route-to-route extrapolation for small molecules is typically performed by using administration of route-specific parameters

and keeping other chemical-specific parameters the same . However, unlike small molecules, upon contact with

different body fluids following different routes of administration, NPs will be covered by different proteins and other

biomolecules, producing different biomolecular coronas and resulting in different patterns of biodistribution. Thus, a recent

study by Chou et al.  clearly demonstrated that the traditional approach for small molecules is not applicable to NPs,

and multiroute PBPK models for NPs should be developed using route-specific data.

The application of mathematical models to nanomedicine is based on breaking down their transport in different discrete

and simpler phases which are eventually modeled separately. The sum of these contributions will eventually provide an

overall picture of the phenomenon with fundamental hints of prediction that will allow better optimization of cancer

treatment and, in this case, NP synthesis . The model developer literally dissects the voyage of the particles in different

phases depending on the function of the organ in which they circulate, the barrier function of various elements (i.e., tumor

vasculature vs. healthy vasculature), and the characteristics of the carrier (shape, size, surface charge, targeting

properties, release rate, etc.). All these phenomena and characteristics are described by mathematical functions that

summarize the physical and chemical variabilities that characterize the biological barriers and represent the various

parameters under consideration and the core of the modeling. The model is then run with appropriate software, which, by

combining different parameters and solving respective equations, provides an estimation of particle location in various

organs, including the tumor. The simulated dynamics can eventually be compared with experimental data to optimize the

reliability of the calibrated model. When close collaboration between wet-lab biologist and computational scientist is not

possible, the latter can extract experimental data from the published literature using “auxiliary” software that allows for the

digitization (image-to-number conversion) of images and graphs from the scientific literature and then publish the model

under copyright permission. All these transitions are eventually followed up with statistical analysis to evaluate the

significance of the data and validate the model. After validation, the model can be used to predict other situations,

nanocarriers, and being applied to other tumor diseases. However, an extrapolation of the modeling results from one

species to another should be conducted very carefully due to parameter uncertainty. For instance, a collective fitting

process of parameter values to data can provide multiple parameter sets that give similar model dynamics reproducing

experimental observations. In this case, identifiability of fit parameters is the crucial step of the model analysis for reliable

application of PBPK models and a more confident translation of their parameters into new experimental settings .

It is worth noting that reproducibility and replicability crisis in research areas has also affected systems biology research

such as PBPK modeling in cancer nanomedicine . One attempt to overcome the issue was to develop some of the

necessary standards and approaches for building models and represent them by expert researchers in the relevant

community. In this context, SBML (Systems Biology Markup Language, an XML-based format)  as the most widespread

language for defining computational biochemical models and SBGN (Systems Biology Graphic Notation)  as a standard

for graphical representation of molecular networks have been proposed as gold standards for the representation of

biological networks and related models . In addition, these efforts focused on the development of tool-independent

ways of presenting models to help avoid potential human errors in translation. Note that these initiatives are not widely

ingrained in tools for PBPK modeling. However, some of them described below support these critical standards.

2. Main PBPK Modeling Software

Below, an overview of the software is provided that are used for PBPK modeling of biodistribution and targeted delivery of

NPs. They differ in the language in which they are created and usually specialize in the analysis of specific PBPK

situations. They are widely applied and have been used in NP research to predict the potential toxic effect of NPs upon

voluntary or accidental administration (i.e., through NP inhalation in polluted environment), determine the PK properties of

a payload, facilitate multiscale and interspecies translation, investigate cell biology phenomena, optimize payload

encapsulation, and naturally estimate tumor targeting.

MATLAB  is regularly used in many scientific fields, including systems biology . In the case of PBPK models and

related PBPK analyses, intermediate to advanced programming skills are required, which present a considerable

disadvantage for its widespread use in the field . MATLAB provides a range of mathematical and numerical methods for

solving PBPK model equations, parameter estimation, and sensitivity analysis . In particular,

several MATLAB toolkits can be used for modeling, simulating, and analyzing PBPK systems, namely SimBiology 

, PottersWheel , and IntiQuan IQM Tools . MATLAB was used to simulate the biodistribution of NPs of

different sizes in the range from 46 to 162 nm after intravenous injection into the plasma compartment of rats . The

researchers showed that the model reproduces the in vivo data from a study of the pharmacokinetics of mesoporous silica

NPs  and then performed local and global sensitivity analyses to rank the importance of various parameters related to
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the problem of NP delivery to the tumor. Tumor vascularization (fraction and porosity), tumor blood viscosity, NP size and

degradation rate have been shown as the main parameters to consider when calculating NP extravasation in the tumor

volume, considering passive targeting as the major targeting mechanism. A similar approach was used to evaluate the

biodistribution of dexamethasone in a model of acute lymphoblastic leukemia . The model was based on experimental

data obtained after intravenous injection of polymeric NPs. A fluorescent dye was used instead of the drug. The

researchers noted the difficulties in creating a predictive model, in particular, in the first hours after injections, the model

overestimated the blood concentration of the dye. This phenomenon could be explained by particle aggregation and

margination  in the endothelial wall, and to correct the model, they introduced an additional “other” compartment (i.e.,

lymphatic system). For longer time points, the model was consistent with the experimental data, demonstrating a rapid

accumulation of the particles in the liver and spleen 6 h after their injections. This phenomenon was especially

appreciated in consideration that liver and spleen are sites for leukemia blast accumulation and proliferation. MATLAB has

also been used to develop a predictive model for tumor targeting of dendrimers functionalized with an insulin-like growth

factor 1 peptide analog (NPs for molecular imaging that can bind to mRNA inside cancerous cells) . When fitting the

model to the experimental data, the researchers found that only 10–20% of the administered NPs were available for

transport from the blood to the interstitial tissues and suggested that previous mouse imaging trials used more NPs than

necessary. Klapproth et al.  used this software to create a model comparing particle biodistribution after intravenous

and intratumoral injection. The work focused on superparamagnetic iron oxide NPs for thermal ablation against a potential

treatment of brain cancer , which is currently being treated with both intravenous and local administration of

pharmaceuticals. The model confirmed the experimental data on the dynamic NP redistribution in the organism within 72

h, reaching equilibrium 100 h after local injection. Intravenous injection has demonstrated rapid particle retention in all

organs (particularly in the liver and spleen) and subsequent slow release.

Berkeley Madonna  is relatively easy for beginners and is sufficient to develop basic PBPK models for routine PBPK

analyses (e.g., parameter estimation, route-to-route extrapolation, and Monte Carlo analysis) . However, it is not

intended for visualization of biochemical systems, requiring specialists in the field of biomedicine and mathematical

modeling . Examples of PBPK models of NPs coded in Berkeley Madonna are proposed in 

. The model by Cheng et al. was used to analyze 376 experimental data sets on the kinetics of NPs in mice with

tumors . The researchers confirmed that nanomaterials with a hydrodynamic diameter of less than 10 nm can be

delivered to tumors with greater efficiency compared to larger particles. In addition, nanomaterials with a hydrodynamic

diameter of over 200 nm have a relatively higher efficiency of delivery to the tumor than particles with a size of about

10−200 nm. The study also showed that rod-shaped NPs show better tumor accumulation than variants with other

geometry, including spherical, plate-like, or flake-like shapes. Based on several studies, the researchers noted that

elongated nanostructures, compared to nanospheres, exhibit greater tumor accumulation and a longer half-life in blood

circulation, perhaps because of adherence to endothelial cells lining the blood vessel walls, thus, enhancing the site-

specific delivery. Furthermore, they concluded that the administration of nanomaterials with a positive (>10 mV) and

almost-neutral (−10 to 10 mV) surface charge provides a similar tumor accumulation, which is higher than for negatively

charged NPs. These results were partially confirmed by Zhang et al. , who used the Berkeley Madonna software to

characterize the biodistribution of spherical and rod-shaped gold nanoprobes and tumor accumulation in a model of lung

cancer. They found that while nontargeted rod-shaped NPs showed higher tumor accumulation during the first hours after

intravenous injection, similar results were obtained at longer time points between nontargeted rod-shaped and spherical

delivery platforms. A clear advantage in tumor accumulation was provided by surface functionalization of the particles with

RGD to target αvβ3 integrin-positive cancer cells and tumor angiogenic vessels. In the case of active targeting, the

researchers found a higher distribution coefficient and a much higher maximum tumor uptake rate constant for rod-shaped

particles (compared to spherical particles), which eventually resulted in a more effective inhibition of tumor growth by NP-

mediated chemoradiotherapy.

The R language  is a powerful high-level programming platform that is used in various fields of study for statistical

computing and graphics . The advantages of the R language are that it is freely distributed and can perform all PBPK

analyses. However, it requires medium- to high-level programming skills (same as MATLAB) . The R language may be

the optimal choice for projects related to Markov chain Monte Carlo analysis or statistical analysis. For example, Cheng et

al. used it for normality testing, one-way ANOVA, and simple and multivariate linear regression to analyze data on the

efficiency of NP delivery to tumors , whereas Chou et al. applied it to optimize the parameters of a multiroute PBPK

model constructed for different sizes (1.4–200 nm) of gold NPs in adult rats at different routes of administration (i.e.,

intravenous, oral gavage, intratracheal instillation, and endotracheal inhalation) . In addition, the R Shiny package can

be used to create an interactive web interface for PBPK models .

acslX. Many PBPK models for environmental chemicals, drugs, and nanomaterials have been developed using acslX ,

which has been deprecated since November 2015. Lin et al.  provided guidance on converting PBPK model code from
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acslX to alternative modeling tools (Berkeley Madonna, MATLAB, and R) and discussed the advantages and

disadvantages of each software package in implementing PBPK models in toxicology. Application of acslX to PBPK

modeling of NP delivery can be found in many research .

BioUML  is an integrated web-based platform for systems biology and data analysis , which has been successfully

tested for modeling biological systems . It allows to translate PBPK models from text formats (e.g., Berkeley

Madonna) into SBML and SBGN standards, making these models accessible to a wide range of scientists and providing a

quick-start guide to work with them . To represent PBPK models in BioUML, a modular approach is used, according to

which the system under study is considered as a set of interconnected subsystems (see the example in the Section 6

below). It is also worth noting that BioUML allows one to conduct an identifiability analysis of fitted parameter values

mentioned above as a critical procedure for all PBPK models.

Simcyp Simulator  is a software platform for population PBPK modeling and simulation. It links in vitro data to in vivo

absorption, distribution, metabolism, excretion (ADME), and pharmacokinetic/pharmacodynamic outcomes to explore

clinical scenarios and support drug development decisions, including regulatory submissions and drug labels .

This platform contains a library of predefined models and a database of physiological parameters, making it popular with

PBPK users . However, due to the complex ADME processes of NPs, it may not provide enough flexibility and

capability to support complex NP models . Therefore, the use of Simcyp for the study of nanoformulations is rare .

GastroPlus  is a mechanistically based simulation software package that simulates intravenous, oral, oral cavity,

ocular, inhalation, dermal, subcutaneous, and intramuscular absorption, biopharmaceutics, pharmacokinetics, and

pharmacodynamics in humans and animals . It is widely used for PBPK modeling , but, like Simcyp, it is inferior to

general purpose programming platforms (Matlab-Simulink, Berkeley Madonna, etc.) in the development of complex PBPK

models of NPs . However, GastroPlus has been applied for simulation and in silico prediction of pharmacokinetics and

absorption of NPs .

PK-Sim  is a comprehensive software tool for whole-body PBPK modeling. It enables access to all relevant anatomical

and physiological parameters for humans and the most common preclinical animal models that are contained in the

integrated database . PK-Sim offers different customized model structures but allows only minor modifications to

them. However, it is fully compatible with the stand-alone general purpose graphical modeling tool MoBi , which makes

the development of PBPK models (also for NPs) possible . Thus, Aborig et al. used the software to parameterize a

PBPK model of the biodistribution of gold NPs obtained by green synthesis in mice , while Kullenberg et al. applied it to

develop a PBPK model describing the disposition of pegylated liposomal doxorubicin . In addition, the platform includes

interfaces to R and MATLAB that are useful to analyze and interpret PK-Sim and MoBi models. Advanced model analysis

may, for example, involve statistical analysis of the results obtained or the calculation of local or global sensitivity

measures to assess model robustness and quality .

3. Auxiliary PBPK Modeling Software

In this section, a brief description of software is given that is not widely used for PBPK modeling, but can provide

additional tools for mathematical analysis:

Julia  is a flexible dynamic programming language appropriate for scientific and numerical computing. It has been

shown that in the context of PBPK models, a DifferentialEquations.jl package outperforms MATLAB in solving a stiff

system of ordinary differential equations .

NONMEM  solves pharmaceutical statistical problems in which within-subject and between-subjects variability is taken

into account when fitting a PK/PD model to data. Bauer recently created two tutorials to apply this tool to simple and

complex scenarios . NONMEM allows to build population physiologically based PK models .

GNU MCSim  is specifically designed to conduct Monte Carlo stochastic simulations that can be used for population

variability analysis when the distribution of each parameter of the PBPK model is known . In particular, the software

was applied to estimate parameters in several PBPK models of NPs .

Phoenix WinNonlin  is one of the most common applications used in the industry for the analysis of PK/PD data. The

platform is suitable for modeling, simulations, and analysis of PBPK models of NPs as well .

GraphPad Prism  is a commercial scientific software for 2D plotting and statistical analysis  which can be applied to

evaluate the overall quality of fit between simulated and experimental data  or to compare delivery efficiency of
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different types of NPs .

Crystal Ball  is the spreadsheet-based application for predictive modeling, forecasting, simulation, and optimization

which is suitable for statistical analysis (e.g., Monte Carlo simulations  or regression analysis ) to parametrize and

validate PBPK models.

TableCurve 2D  is an automated curve fitting software for engineers and researchers that includes a wide range of

linear and nonlinear models . It can be used to fit the experimental data on the biodistribution of NP in PBPK

simulations .

ADAPT  is a computational modeling platform developed for PK/PD applications. Mager et al. used it to estimate the

unknown parameters of the PBPK model for composite nanodevices .

NanoSolveIT  is a new informatics system for in silico nanosafety assessment  that, in particular, can be applied for

PBPK modeling of nanomaterial biodistribution .

SPSS  is a platform for advanced statistical analysis. Zazo et al. used it in the development of a PBPK model of a drug

delivery system based on gold NPs for stavudine biodistribution .

Microsoft Excel  is not a specialized tool for creating PBPK models; however, it can successfully code and analyze

them . Statistical analysis and calculations with this software can also be used in modeling NP kinetics .

Statistics Calculator  was developed by StatPac, Inc. Despite the modest design, the program works correctly and

can be used by researchers for statistical analysis of experimental data when creating PBPK models .

Minitab  is a statistics package for identifying trends in data, finding and predicting patterns, uncovering hidden

relationships between variables, and visualizing data. An example of a nanoparticle study in which the software was used

for two- and three-way ANOVA of the antitumor effect and cellular uptake ratio of free and liposomal doxorubicin in human

cancer cell lines (HepG2, Huh7, SNU449, and MCF7) is given in .

COMSOL Multiphysics  is a software package that provides fully coupled multiphysics and single-physics modeling

capabilities. This tool is very useful for numerically solving complex physical equations. Thus, Chen et al. applied it to

solve the advection-diffusion equations simulating the concentration of superparamagnetic iron oxide NPs coated by gold

and conjugated with polyethylene glycol in the cerebral blood and brain tissue in mice .

OriginPro  is a data analysis and graphing software that includes tools for peak fitting, surface fitting, statistics, and

signal processing . It can be utilized for parameter estimation of PBPK models .

WebPlotDigitizer  is an open source and cross-platform (web and desktop) semiautomated tool for extraction of the

numerical data from engineering images of data visualizations. It works with a wide variety of charts (x-y, histograms,

polar, ternary, maps, etc.) and can be used to digitize experimental data on the biodistribution of NPs published as graphs

.

PlotDigitizer  is an open source Java program that converts information from 2D plots or graphs to standard x-y
values (tabular format). For instance, the program can be used to digitize experimental data from the literature, after which

PBPK models can be calibrated using the obtained quantitative values .

UN-SCAN-IT  is a software that automatically converts graph images to their underlying (x, y) data . It works with

most image formats (JPG, TIFF, GIF, BMP, PNG, etc.) and can integrate peak areas, smooth data, take derivatives,

rescale graphs, and export (x, y) data for use in other programs. Lee et al. used the software to obtain the PK data for

quantum dots from the published figures .

References

1. Levit, S.L.; Tang, C. Polymeric nanoparticle delivery of combination therapy with synergistic effects in ovarian cancer. N
anomaterials 2021, 11, 1048.

2. Gerlowski, L.E.; Jain, R.K. Physiologically based pharmacokinetic modeling: Principles and applications. J. Pharm. Sci.
1983, 72, 1103–1127.

[44]

[95]

[28][53] [50]

[96]

[97]

[53]

[98]

[36]

[99] [100]

[101]

[102]

[92]

[103]

[104][105] [60][83]

[106]

[107]

[108]

[83]

[109]

[33]

[110]

[111] [34]

[112]

[12][26][44][57]

[113]

[24]

[114] [115]

[116]



3. Gilkey, M.; Krishnan, V.; Scheetz, L.; Jia, X.; Rajasekaran, A.; Dhurjati, P. Physiologically based pharmacokinetic model
ing of fluorescently labeled block copolymer nanoparticles for controlled drug delivery in leukemia therapy. CPT Pharm
acomet. Syst. Pharmacol. 2015, 4, 167–174.

4. Dogra, P.; Butner, J.D.; Ramírez, J.R.; Chuang, Y.-l.; Noureddine, A.; Brinker, C.J.; Cristini, V.; Wang, Z. A mathematical
model to predict nanomedicine pharmacokinetics and tumor delivery. Comput. Struct. Biotechnol. J. 2020, 18, 518–53
1.

5. Howell, B.A.; Chauhan, A. A physiologically based pharmacokinetic (PBPK) model for predicting the efficacy of drug ov
erdose treatment with liposomes in man. J. Pharm. Sci. 2010, 99, 3601–3619.

6. Perazzolo, S.; Shen, D.D.; Ho, R.J. Physiologically based pharmacokinetic modeling of 3 HIV drugs in combination and
the role of lymphatic system after subcutaneous dosing. Part 2: Model for the drug-combination nanoparticles. J. Phar
m. Sci. 2022, 111, 825–837.

7. Rajoli, R.K.; Back, D.J.; Rannard, S.; Freel Meyers, C.L.; Flexner, C.; Owen, A.; Siccardi, M. Physiologically based phar
macokinetic modelling to inform development of intramuscular long-acting nanoformulations for HIV. Clin. Pharmacokin
et. 2015, 54, 639–650.

8. Pery, A.R.; Brochot, C.; Hoet, P.H.; Nemmar, A.; Bois, F.Y. Development of a physiologically based kinetic model for 99
m-technetium-labelled carbon nanoparticles inhaled by humans. Inhal. Toxicol. 2009, 21, 1099–1107.

9. Li, M.; Al-Jamal, K.T.; Kostarelos, K.; Reineke, J. Physiologically based pharmacokinetic modeling of nanoparticles. AC
S Nano 2010, 4, 6303–6317.

10. Yuan, D.; He, H.; Wu, Y.; Fan, J.; Cao, Y. Physiologically based pharmacokinetic modeling of nanoparticles. J. Pharm.
Sci. 2019, 108, 58–72.

11. Jones, H.; Rowland-Yeo, K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and d
evelopment. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 1–12.

12. Lin, Z.; Monteiro-Riviere, N.A.; Riviere, J.E. A physiologically based pharmacokinetic model for polyethylene glycol-coat
ed gold nanoparticles of different sizes in adult mice. Nanotoxicology 2016, 10, 162–172.

13. Li, M.; Panagi, Z.; Avgoustakis, K.; Reineke, J. Physiologically based pharmacokinetic modeling of PLGA nanoparticles
with varied mPEG content. Int. J. Nanomed. 2012, 7, 1345.

14. Chou, W.C.; Cheng, Y.H.; Riviere, J.E.; Monteiro-Riviere, N.A.; Kreyling, W.G.; Lin, Z. Development of a multi-route phy
siologically based pharmacokinetic (PBPK) model for nanomaterials: A comparison between a traditional versus a new
route-specific approach using gold nanoparticles in rats. Part. Fibre Toxicol. 2022, 19, 47.

15. Moore, J.A.; Chow, J.C. Recent progress and applications of gold nanotechnology in medical biophysics using artificial
intelligence and mathematical modeling. Nano Express 2021, 2, 022001.

16. Brown, L.V.; Coles, M.C.; McConnell, M.; Ratushny, A.V.; Gaffney, E.A. Analysis of cellular kinetic models suggest that
physiologically based model parameters may be inherently, practically unidentifiable. J. Pharmacokinet. Pharmacodyn.
2022, 49, 539–556.

17. Tiwari, K.; Kananathan, S.; Roberts, M.G.; Meyer, J.P.; Sharif Shohan, M.U.; Xavier, A.; Maire, M.; Zyoud, A.; Men, J.; N
g, S. Reproducibility in systems biology modelling. Mol. Syst. Biol. 2021, 17, e9982.

18. Hucka, M.; Bergmann, F.T.; Chaouiya, C.; Dräger, A.; Hoops, S.; Keating, S.M.; König, M.; Le Novère, N.; Myers, C.J.;
Olivier, B.G. The systems biology markup language (SBML): Language specification for level 3 version 2 core release
2. J. Integr. Bioinform. 2019, 16, 20190021.

19. Novère, N.L.; Hucka, M.; Mi, H.; Moodie, S.; Schreiber, F.; Sorokin, A.; Demir, E.; Wegner, K.; Aladjem, M.I.; Wimalarat
ne, S.M. The systems biology graphical notation. Nat. Biotechnol. 2009, 27, 735–741.

20. Porubsky, V.L.; Goldberg, A.P.; Rampadarath, A.K.; Nickerson, D.P.; Karr, J.R.; Sauro, H.M. Best practices for making r
eproducible biochemical models. Cell Syst. 2020, 11, 109–120.

21. The MathWorks, Inc., USA. MATLAB. Available online: http://www.mathworks.com (accessed on 11 July 2022).

22. Schmidt, H.; Jirstrand, M. Systems Biology Toolbox for MATLAB: A computational platform for research in systems biol
ogy. Bioinformatics 2006, 22, 514–515.

23. Lin, Z.; Jaberi-Douraki, M.; He, C.; Jin, S.; Yang, R.S.; Fisher, J.W.; Riviere, J.E. Performance assessment and translati
on of physiologically based pharmacokinetic models from acslX to Berkeley Madonna, MATLAB, and R Language: Oxy
tetracycline and gold nanoparticles as case examples. Toxicol. Sci. 2017, 158, 23–35.

24. Aborig, M.; Malik, P.R.; Nambiar, S.; Chelle, P.; Darko, J.; Mutsaers, A.; Edginton, A.N.; Fleck, A.; Osei, E.; Wettig, S. Bi
odistribution and physiologically-based pharmacokinetic modeling of gold nanoparticles in mice with interspecies extrap
olation. Pharmaceutics 2019, 11, 179.



25. Dong, D.; Wang, X.; Wang, H.; Zhang, X.; Wang, Y.; Wu, B. Elucidating the in vivo fate of nanocrystals using a physiolo
gically based pharmacokinetic model: A case study with the anticancer agent SNX-2112. Int. J. Nanomed. 2015, 10, 25
21.

26. Glass, E.; Kulkarni, S.; Eng, C.; Feng, S.; Malavia, A.; Radhakrishnan, R. Physiologically based multiphysics pharmaco
kinetic model for determining the temporal biodistribution of targeted nanoparticles. bioRxiv 2022.

27. Kagan, L.; Gershkovich, P.; Wasan, K.M.; Mager, D.E. Dual physiologically based pharmacokinetic model of liposomal
and nonliposomal amphotericin B disposition. Pharm. Res. 2014, 31, 35–45.

28. Lu, X.-F.; Bi, K.; Chen, X. Physiologically based pharmacokinetic model of docetaxel and interspecies scaling: Compari
son of simple injection with folate receptor-targeting amphiphilic copolymer-modified liposomes. Xenobiotica 2016, 46,
1093–1104.

29. MacCalman, L.; CL, T.; Kuempel, E. Development of a bio-mathematical model in rats to describe clearance, retention
and translocation of inhaled nano particles throughout the body. J. Phys. Conf. Ser. 2009, 151, 012028.

30. Opitz, A.W.; Wickstrom, E.; Thakur, M.L.; Wagner, N.J. Physiologically based pharmacokinetics of molecular imaging n
anoparticles for mRNA detection determined in tumor-bearing mice. Oligonucleotides 2010, 20, 117–125.

31. Kasyanova, V.; Bazhukova, I. Modeling of cerium oxide nanoparticles pharmacokinetics. AIP Conf. Proc. 2020, 2313, 0
80015.

32. Silva, A.H.; Lima, E., Jr.; Mansilla, M.V.; Zysler, R.D.; Pisciotti, M.L.M.; Locatelli, C.; Rajoli, R.K.R.; Owen, A.; Creczyns
ki-Pasa, T.B.; Siccardi, M. A physiologically based pharmacokinetic model to predict the superparamagnetic iron oxide
nanoparticles (SPIONs) accumulation in vivo. Eur. J. Nanomed. 2017, 9, 79–90.

33. Chen, J.; Yuan, M.; Madison, C.A.; Eitan, S.; Wang, Y. Blood-brain barrier crossing using magnetic stimulated nanoparti
cles. J. Control. Release 2022, 345, 557–571.

34. Dubaj, T.; Kozics, K.; Sramkova, M.; Manova, A.; Bastús, N.G.; Moriones, O.H.; Kohl, Y.; Dusinska, M.; Runden-Pran,
E.; Puntes, V.; et al. Pharmacokinetics of PEGylated gold nanoparticles: In vitro-in vivo correlation. Nanomaterials 202
2, 12, 511.

35. Maiwald, T.; Timmer, J. Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 2008, 24, 20
37–2043.

36. Mager, D.E.; Mody, V.; Xu, C.; Forrest, A.; Lesniak, W.G.; Nigavekar, S.S.; Kariapper, M.T.; Minc, L.; Khan, M.K.; Balog
h, L.P. Physiologically based pharmacokinetic model for composite nanodevices: Effect of charge and size on in vivo di
sposition. Pharm. Res. 2012, 29, 2534–2542.

37. Dogra, P.; Adolphi, N.L.; Wang, Z.; Lin, Y.-S.; Butler, K.S.; Durfee, P.N.; Croissant, J.G.; Noureddine, A.; Coker, E.N.; Be
arer, E.L. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-bas
ed pharmacokinetics. Nat. Commun. 2018, 9, 4551.

38. Toy, R.; Hayden, E.; Shoup, C.; Baskaran, H.; Karathanasis, E. The effects of particle size, density and shape on margi
nation of nanoparticles in microcirculation. Nanotechnology 2011, 22, 115101.

39. Klapproth, A.P.; Shevtsov, M.; Stangl, S.; Li, W.B.; Multhoff, G. A new pharmacokinetic model describing the biodistributi
on of intravenously and intratumorally administered superparamagnetic iron oxide nanoparticles (SPIONs) in a GL261
xenograft glioblastoma model. Int. J. Nanomed. 2020, 15, 4677.

40. Verma, J.; Lal, S.; Van Noorden, C.J. Nanoparticles for hyperthermic therapy: Synthesis strategies and applications in g
lioblastoma. Int. J. Nanomed. 2014, 9, 2863.

41. University of California at Berkeley, USA. Berkeley Madonna. Available online: https://berkeley-madonna.myshopify.co
m/ (accessed on 12 July 2022).

42. Marcoline, F.V.; Furth, J.; Nayak, S.; Grabe, M.; Macey, R.I. Berkeley Madonna Version 10–A simulation package for so
lving mathematical models. CPT Pharmacomet. Syst. Pharmacol. 2022, 11, 290–301.

43. Kutumova, E.; Akberdin, I.; Kiselev, I.; Sharipov, R.; Kolpakov, F. Modular representation of physiologically based phar
macokinetic models: Nanoparticle delivery to solid tumors in mice as an example. Mathematics 2022, 10, 1176.

44. Cheng, Y.-H.; He, C.; Riviere, J.E.; Monteiro-Riviere, N.A.; Lin, Z. Meta-analysis of nanoparticle delivery to tumors usin
g a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano 2020, 14, 3075–3095.

45. Carlander, U.; Li, D.; Jolliet, O.; Emond, C.; Johanson, G. Toward a general physiologically-based pharmacokinetic mo
del for intravenously injected nanoparticles. Int. J. Nanomed. 2016, 11, 625.

46. Li, D.; Johanson, G.; Emond, C.; Carlander, U.; Philbert, M.; Jolliet, O. Physiologically based pharmacokinetic modeling
of polyethylene glycol-coated polyacrylamide nanoparticles in rats. Nanotoxicology 2014, 8, 128–137.



47. Li, D.; Morishita, M.; Wagner, J.G.; Fatouraie, M.; Wooldridge, M.; Eagle, W.E.; Barres, J.; Carlander, U.; Emond, C.; Jo
lliet, O. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxi
de nanoparticles in rats. Part. Fibre Toxicol. 2015, 13, 45.

48. Li, L.; He, H.; Jiang, S.; Qi, J.; Lu, Y.; Ding, N.; Lin, H.-S.; Wu, W.; Xiang, X. Simulation of the in vivo fate of polymeric n
anoparticles traced by environment-responsive near-infrared dye: A physiologically based pharmacokinetic modelling a
pproach. Molecules 2021, 26, 1271.

49. Liang, X.; Wang, H.; Grice, J.E.; Li, L.; Liu, X.; Xu, Z.P.; Roberts, M.S. Physiologically based pharmacokinetic model for
long-circulating inorganic nanoparticles. Nano Lett. 2016, 16, 939–945.

50. Lin, P.; Chen, J.-W.; Chang, L.W.; Wu, J.-P.; Redding, L.; Chang, H.; Yeh, T.-K.; Yang, C.S.; Tsai, M.-H.; Wang, H.-J. Co
mputational and ultrastructural toxicology of a nanoparticle, quantum dot 705, in mice. Environ. Sci. Technol. 2008, 42,
6264–6270.

51. Wenger, Y.; Schneider II, R.J.; Reddy, G.R.; Kopelman, R.; Jolliet, O.; Philbert, M.A. Tissue distribution and pharmacoki
netics of stable polyacrylamide nanoparticles following intravenous injection in the rat. Toxicol. Appl. Pharmacol. 2011,
251, 181–190.

52. Zhang, L.; Su, H.; Wang, H.; Li, Q.; Li, X.; Zhou, C.; Xu, J.; Chai, Y.; Liang, X.; Xiong, L. Tumor chemo-radiotherapy wit
h rod-shaped and spherical gold nano probes: Shape and active targeting both matter. Theranostics 2019, 9, 1893.

53. Chen, W.-Y.; Cheng, Y.-H.; Hsieh, N.-H.; Wu, B.-C.; Chou, W.-C.; Ho, C.-C.; Chen, J.-K.; Liao, C.-M.; Lin, P. Physiologic
ally based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice. Int. J. Nanomed. 2015, 10, 62
77.

54. R Core Team. R language. Available online: https://www.r-project.org/ (accessed on 12 July 2022).

55. Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314.

56. Mitchell, E.E.L.; Gauthier, J.S. Advanced Continuous Simulation Language (ACSL). Simulation 1976, 25, 72–78.

57. Carlander, U.; Moto, T.P.; Desalegn, A.A.; Yokel, R.A.; Johanson, G. Physiologically based pharmacokinetic modeling o
f nanoceria systemic distribution in rats suggests dose-and route-dependent biokinetics. Int. J. Nanomed. 2018, 13, 26
31.

58. Lin, Z.; Monteiro-Riviere, N.A.; Kannan, R.; Riviere, J.E. A computational framework for interspecies pharmacokinetics,
exposure and toxicity assessment of gold nanoparticles. Nanomedicine 2016, 11, 107–119.

59. Lankveld, D.P.; Oomen, A.G.; Krystek, P.; Neigh, A.; Troost–de Jong, A.; Noorlander, C.; Van Eijkeren, J.; Geertsma, R.;
De Jong, W. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010, 31, 8350
–8361.

60. Sweeney, L.M.; MacCalman, L.; Haber, L.T.; Kuempel, E.D.; Tran, C.L. Bayesian evaluation of a physiologically-based
pharmacokinetic (PBPK) model of long-term kinetics of metal nanoparticles in rats. Regul. Toxicol. Pharmacol. 2015, 7
3, 151–163.

61. Biosoft.ru, Ltd., Russia. BioUML. Available online: https://www.biouml.org (accessed on 14 July 2022).

62. Kolpakov, F.; Akberdin, I.; Kiselev, I.; Kolmykov, S.; Kondrakhin, Y.; Kulyashov, M.; Kutumova, E.; Pintus, S.; Ryabova,
A.; Sharipov, R. BioUML—Towards a universal research platform. Nucleic Acids Res. 2022, 50, W124–W131.

63. Kutumova, E.; Kiselev, I.; Sharipov, R.; Lifshits, G.; Kolpakov, F. Thoroughly calibrated modular agent-based model of t
he human cardiovascular and renal systems for blood pressure regulation in health and disease. Front. Physiol. 2021,
12, 746300.

64. Akberdin, I.R.; Kiselev, I.N.; Pintus, S.S.; Sharipov, R.N.; Vertyshev, A.Y.; Vinogradova, O.L.; Popov, D.V.; Kolpakov, F.
A. A modular mathematical model of exercise-induced changes in metabolism, signaling, and gene expression in huma
n skeletal muscle. Int. J. Mol. Sci. 2021, 22, 10353.

65. Certara, LP, USA. Simcyp. Available online: https://www.certara.com/software/simcyp-pbpk/ (accessed on 22 Septemb
er 2022).

66. Jamei, M.; Marciniak, S.; Feng, K.; Barnett, A.; Tucker, G.; Rostami-Hodjegan, A. The Simcyp population-based ADME
simulator. Expert Opin. Drug Metab. Toxicol. 2009, 5, 211–223.

67. Jamei, M.; Marciniak, S.; Edwards, D.; Wragg, K.; Feng, K.; Barnett, A.; Rostami-Hodjegan, A. The simcyp population b
ased simulator: Architecture, implementation, and quality assurance. Silico Pharmacol. 2013, 1, 9.

68. Ezuruike, U.; Zhang, M.; Pansari, A.; De Sousa Mendes, M.; Pan, X.; Neuhoff, S.; Gardner, I. Guide to development of
compound files for PBPK modeling in the Simcyp population-based simulator. CPT: Pharmacomet. Syst. Pharmacol. 20
22, 11, 805–821.



69. Kostewicz, E.S.; Aarons, L.; Bergstrand, M.; Bolger, M.B.; Galetin, A.; Hatley, O.; Jamei, M.; Lloyd, R.; Pepin, X.; Rosta
mi-Hodjegan, A.; et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur. J. Pharm. Sci.
2014, 57, 300–321.

70. Lin, Z.; Cheng, Y.H.; Chou, W.C.; Li, M. Chapter 10—Physiologically based pharmacokinetic model calibration, evaluati
on, and performance assessment. In Physiologically Based Pharmacokinetic (PBPK) Modeling: Methods and Applicatio
ns in Toxicology and Risk Assessment; Academic Press: Cambridge, MA, USA, 2020; pp. 243–279.

71. El-Khateeb, E.; Burkhill, S.; Murby, S.; Amirat, H.; Rostami-Hodjegan, A.; Ahmad, A. Physiological-based pharmacokine
tic modeling trends in pharmaceutical drug development over the last 20-years; in-depth analysis of applications, organ
izations, and platforms. Biopharm. Drug Dispos. 2021, 42, 107–117.

72. Li, M.; Zou, P.; Tyner, K.; Lee, S. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparti
cles. AAPS J. 2017, 19, 26–42.

73. Litou, C.; Patel, N.; Turner, D.B.; Kostewicz, E.; Kuentz, M.; Box, K.J.; Dressman, J. Combining biorelevant in vitro and
in silico tools to simulate and better understand the in vivo performance of a nano-sized formulation of aprepitant in the
fasted and fed states. Eur. J. Pharm. Sci. 2019, 138, 105031.

74. Simulations Plus, Inc., USA. GastroPlus. Available online: https://www.simulations-plus.com/software/gastroplus/ (acce
ssed on 23 September 2022).

75. Romero, R.M.; Bolger, M.B.; Morningstar-Kywi, N.; Haworth, I.S. Teaching of biopharmaceutics in a drug design cours
e: Use of GastroPlus as educational software. J. Chem. Educ. 2020, 97, 2212–2220.

76. Kumar, S.; Singh, S.K. In silico-in vitro-in vivo studies of experimentally designed carvedilol loaded silk fibroin-casein na
noparticles using physiological based pharmacokinetic model. Int. J. Biol. Macromol. 2017, 96, 403–420.

77. Mahdi, W.A.; Hussain, A.; Ramzan, M. 5-Fluorouracil loaded biogenic and albumin capped gold nanoparticles using ba
cterial enzyme –- in vitro-in silico Gastroplus® simulation and prediction. Processes 2020, 8, 1579.

78. Stewart, A.M.; Grass, M.E. Practical approach to modeling the impact of amorphous drug nanoparticles on the oral abs
orption of poorly soluble drugs. Mol. Pharm. 2020, 17, 180–189.

79. Ali, H.; Verma, P.R.P.; Dubey, S.K.; Venkatesan, J.; Seo, Y.; Kim, S.K.; Singh, S.K. In vitro–in vivo and pharmacokinetic
evaluation of solid lipid nanoparticles of furosemide using Gastroplus™. RSC Adv. 2017, 7, 33314–33326.

80. Bayer Technology Services, GmbH, Germany. PK-sim and MoBi. Available online: https://www.open-systems-pharmac
ology.org/ (accessed on 23 September 2022).

81. Eissing, T.; Kuepfer, L.; Becker, C.; Block, M.; Coboeken, K.; Gaub, T.; Goerlitz, L.; Jaeger, J.; Loosen, R.; Ludewig, B.;
et al. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body
physiology, disease biology, and molecular reaction networks. Front. Physiol. 2011, 2, 4.

82. Willmann, S.; Lippert, J.; Sevestre, M.; Solodenko, J.; Fois, F.; Schmitt, W. PK-Sim®: A physiologically based pharmaco
kinetic ‘whole-body’ model. BIOSILICO 2003, 1, 121–124.

83. Kullenberg, F.; Degerstedt, O.; Calitz, C.; Pavlović, N.; Balgoma, D.; Gråsjö, J.; Sjögren, E.; Hedeland, M.; Heindryckx,
F.; Lennernäs, H. In vitro cell toxicity and intracellular uptake of doxorubicin exposed as a solution or liposomes: Implica
tions for treatment of hepatocellular carcinoma. Cells 2021, 10, 1717.

84. Julia. Available online: https://julialang.org (accessed on 14 July 2022).

85. Beal, S.L., Sheiner, L.B. (University of California, USA), Bauer, R.J. (ICON Clinical Research, LLC, Ireland). NONMEM.
Available online: https://www.iconplc.com/innovation/nonmem (accessed on 19 July 2022).

86. Bauer, R.J. NONMEM tutorial part I: Description of commands and options, with simple examples of population analysi
s. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 525–537.

87. Bauer, R.J. NONMEM tutorial part II: Estimation methods and advanced examples. CPT Pharmacomet. Syst. Pharmac
ol. 2019, 8, 538–556.

88. GNU Project, Free Software Foundation, Inc., USA. GNU MCSim. Available online: https://www.gnu.org/software/mcsi
m (accessed on 19 July 2022).

89. Bois, F.Y. GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics 2009, 2
5, 1453–1454.

90. Elgrabli, D.; Beaudouin, R.; Jbilou, N.; Floriani, M.; Pery, A.; Rogerieux, F.; Lacroix, G. Biodistribution and clearance of
TiO2 nanoparticles in rats after intravenous injection. PLoS ONE 2015, 10, e0124490.

91. Certara USA. Phoenix WiNonlin. Available online: https://www.certara.com/software/phoenix-winnonlin/ (accessed on 1
9 July 2022).



92. Zazo, H.; Colino, C.I.; Gutiérrez-Millán, C.; Cordero, A.A.; Bartneck, M.; Lanao, J.M. Physiologically Based Pharmacoki
netic (PBPK) Model of Gold Nanoparticle-Based Drug Delivery System for Stavudine Biodistribution. Pharmaceutics 20
22, 14, 406.

93. GraphPad Software, Inc., USA. GraphPad Prism. Available online: https://www.graphpad.com/ (accessed on 19 July 20
22).

94. Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412.

95. Decisioneering, Inc., USA (until March 2007); Hyperion, USA (until July 2007); Oracle, USA. Crystal Ball. Available onli
ne: https://www.oracle.com/applications/crystalball/ (accessed on 19 July 2022).

96. AISN Software, Inc. (until 1990); Jandel Scientific Software, USA (until 1995); SPSS, Inc., USA (until 2004); Systat Soft
ware, Inc., USA. TableCurve 2D. Available online: https://systatsoftware.com/tablecurve2d/ (accessed on 14 July 202
2).

97. Moore, K. TableCurve 3.0. J. Chem. Inf. Comput. Sci. 1992, 32, 392.

98. Biomedical Simulations Resource (BMSR), USA. ADAPT. Available online: https://bmsr.usc.edu/software/adapt/ (acces
sed on 19 July 2022).

99. Consortium of 16 European partners (from 12 EU countries: Cyprus, Denmark, Estonia, Finland, Germany, Greece, Irel
and, Netherlands, Norway, Poland, Sweden and the UK) and 8 international partners from USA, Australia, South Africa,
Japan and South Korea. NanoSolveIT. Available online: https://nanosolveit.eu/ (accessed on 19 July 2022).

100. Afantitis, A.; Melagraki, G.; Isigonis, P.; Tsoumanis, A.; Varsou, D.D.; Valsami-Jones, E.; Papadiamantis, A.; Ellis, L.-J.
A.; Sarimveis, H.; Doganis, P. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integra
ted tools for in silico nanosafety assessment. Comput. Struct. Biotechnol. J. 2020, 18, 583–602.

101. Tsiros, P.; Cheimarios, N.; Tsoumanis, A.; Jensen, A.Ø.; Melagraki, G.; Lynch, I.; Sarimveis, H.; Afantitis, A. Towards an
in silico integrated approach for testing and assessment of nanomaterials: From predicted indoor air concentrations to l
ung dose and biodistribution. Environ. Sci. Nano 2022, 9, 1282–1297.

102. SPSS, Inc., USA (until 2009); IBM, USA. SPSS. Available online: https://www.ibm.com/products/spss-statistics (access
ed on 19 July 2022).

103. Microsoft, USA. Microsoft Excel. Available online: https://www.microsoft.com/en-us/microsoft-365/excel (accessed on 1
9 July 2022).

104. Marino, D.J. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications. To
xicol. Mech. Methods 2005, 15, 137–154.

105. Bartels, M.; Rick, D.; Lowe, E.; Loizou, G.; Price, P.; Spendiff, M.; Arnold, S.; Cocker, J.; Ball, N. Development of PK-an
d PBPK-based modeling tools for derivation of biomonitoring guidance values. Comput. Methods Programs Biomed. 20
12, 108, 773–788.

106. StatPac, Inc., USA. Statistics Calculator. Available online: https://statistics-calculator.software.informer.com/ (accessed
on 29 September 2022).

107. Bachler, G.; Losert, S.; Umehara, Y.; von Goetz, N.; Rodriguez-Lorenzo, L.; Petri-Fink, A.; Rothen-Rutishauser, B.; Hun
gerbuehler, K. Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in sili
co methods to substitute in vivo experiments. Part. Fibre Toxicol. 2015, 12, 1–18.

108. Minitab, LLC, USA. Minitab. Available online: https://www.minitab.com/en-us/ (accessed on 29 September 2022).

109. COMSOL Inc., USA and other countries. COMSOL Multiphysics. Available online: https://www.comsol.com/ (accessed
on 30 September 2022).

110. OriginLab Corporation, USA. OriginPro. Available online: https://www.originlab.com/origin (accessed on 30 September
2022).

111. Stevenson, K.J. Review of OriginPro 8.5. J. Am. Chem. Soc. 2011, 133, 5621.

112. Rohatgi, A. WebPlotDigitizer. Available online: https://automeris.io/WebPlotDigitizer/ (accessed on 21 July 2022).

113. Huwaldt, J.A. PlotDigitizer. Available online: https://plot-digitizer.software.informer.com/ (accessed on 21 July 2022).

114. Silk Scientific, Inc., USA. UN-SCAN-IT. Available online: https://www.silkscientific.com/graph-digitizer.htm (accessed on
21 July 2022).

115. May, R.A.; Stevenson, K.J. Software review of UN-SCAN-IT: Graph digitizing software. J. Am. Chem. Soc. 2008, 130, 7
516.

116. Lee, H.A.; Leavens, T.L.; Mason, S.E.; Monteiro-Riviere, N.A.; Riviere, J.E. Comparison of quantum dot biodistribution
with a blood-flow-limited physiologically based pharmacokinetic model. Nano Lett. 2009, 9, 794–799.



Retrieved from https://encyclopedia.pub/entry/history/show/76527


