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GnRH receptors are expressed in other reproductive organs, such as the ovary and in tumors originating from the

ovary. In ovarian cancer, GnRH is involved in the regulation of proliferation and metastasis. The effects on ovarian

tumors can be indirect or direct. GnRH acts indirectly via the HPG axis and directly via GnRH receptors on the

surface of ovarian cancer cells.

ovarian cancer  gonadotropin-releasing hormone  GnRH

1. Introduction

Ovarian cancer is a hormone-dependent disease that is influenced by hormonal signaling pathways . This

effect asserts itself after the illness and could therefore also have therapeutic potential. Gonadotropin-releasing

hormone (GnRH) is pulsatile released from neurons in the hypothalamus and induces expression and pulsatile

release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from anterior pituitary. Both, FSH and

LH in turn promote maturation of follicles, ovulation, corpus luteum formation and synthesis of estrogen and

progesterone. In the following, we give an overview on the role of GnRH, the key player in the regulation of ovarian

function, in ovarian cancer development and progression.

2. Direct Effects of GnRH on Ovarian Cancer

Time- and dose-dependent anti-proliferative actions of GnRH agonists have been observed in many cell lines from

different cancer entities of the reproductive tract. This includes ovarian cancer . GnRH antagonists also

show significant growth-inhibiting actions on most GnRH receptor-positive cancer cell lines . This indicates that

GnRH agonists and antagonists may not be differentiated in the GnRH system in cancer cells. In addition, the

signaling mechanisms of the GnRH receptor known to be activated in gonadotropic cells of the pituitary, are not

connected in the transmission of the proliferation inhibiting actions of GnRH analogs in cancer cells. In pituitary

gonadotrophs, specific binding of GnRH to its receptor leads to a conformational change and subsequent activation

of the heterotrimeric G-protein subunit αq/11, which leads to calcium-dependent signal transduction . Activation

of phospholipase C (PLC) causes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). This creates

diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3) . IP3 diffuses from the plasma membrane and

activates receptors on the endoplasmic reticulum (ER). This leads to an outflow of calcium from the ER into the

cytosol . DAG remains in the membrane and induces Ca -dependent protein kinase C (PKC), which in the

course of the induction of mitogen-activated protein kinases (MAPK)  leads to gondotropin synthesis (LH and

FSH) and secretion . The signaling found to be activated by GnRH agonists in the pituitary is not turned
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on in cancers of the ovary, although PLC, PKC and AC can be activated in these cells by pharmacologic

stimulation. .

In contrast to the pituitary gland, the GnRH receptor-mediated signal transduction in gynecological tumors takes

place via coupling with G-protein αi instead of G-protein αq, which may result in variable receptor conformations

and signaling complexes  (Figure 1). Since the gene sequence of GnRH receptors in human carcinomas

of the ovary is the same as that in the pituitary gland, different receptor conformations may explain why GnRH

receptors in ovarian cancer show different mechanisms compared with cells derived from the pituitary. After binding

to G-protein αi, the activated GnRH receptor induces a phosphotyrosine phosphatase (PTP) and prevents the

signaling of growth factor receptors, which leads to a reduction in proliferation of cancer cells .

Growth factor-driven mitogenic signal transduction is prevented which leads to downregulation of growth factor-

mediated activation of mitogen-activated protein kinase (MAPK) , c-fos expression , and growth factor-induced

proliferation . These findings are in agreement with other research on GnRH analogs showing reduction of

growth factor receptor expression  and/or growth factor-induced tyrosine kinase activity 

. Induction of apoptosis does not appear to be involved in the down-regulation of cancer cell proliferation by

GnRH agonists . In contrast, Imai et al. have reported, that GnRH agonist leuprorelin stimulated intratumoral

expression of apoptosis-inducing Fas ligand in GnRH receptor-positive tumor cells. At a concentration of 10 µM,

leuprorelin induced up to a 90% reduction in cell number preceded by Fas ligand production . However,

GnRH agonist triptorelin did not induce apoptosis. On the contrary, by activating NFκB, triptorelin even seems to

protect against apoptosis .

Figure 1. Schematic representation of GnRH-I receptor signaling in ovarian cancer cells. Binding of GnRH-I and

GnRH-I analogs causes G-protein αi-mediated activation of a PTP, resulting in dephosphorylated EGF-R and

inhibition of EGF-R signaling through ERK1/2 or PI3K/AKT pathway leading to reduction of proliferation. GnRH-I-

induced activation of PTP also inhibits the signal transduction of GPER and membrane-associated ERα through
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transactivation of EGF-R. In addition, GnRH induces activation of NFκB to reduce and FAS-ligand to increase

apoptosis. Finally, GnRH agonists activate the JNK/AP-1 pathway resulting in increased G0/1 phase of the cell

cycle and decreased synthesis of DNA. Further details are described in the text. Abbreviations: Akt, protein kinase

B (PKB); AP-1, activator protein-1; E2, estradiol; EGF, epidermal growth factor; EGF-R, EGF receptor; ERα,

estrogen receptor α; ERK1/2, p44/42 mitogen-activated protein (MAP) kinase; FAS, Fas receptor; FasL, Fas

ligand; GDP, guanosine diphosphate; GnRH, gonadotropin-releasing hormone; GPER, G-protein coupled estrogen

receptor; GRB2, growth factor receptor-bound protein 2; GTP, guanosine triphosphate; HB-EGF, heparin-binding

EGF-like growth factor; JNK, c-Jun N-terminal kinase; JunD, transcription factor JunD; MEK, mitogen-activated

protein kinase kinase (MAP2K); MMP, matrix metalloproteinase; NFkB, nucleus factor kB; PI3K, phosphoinositide

3-kinase; PTP, protein tyrosine phosphatase; RAS, G-protein rat sarcoma; SOS, guanine nucleotide exchange

factor “son of sevenless”; SRE, serum response element; Src, tyrosine kinase cellular sarcoma; SRF, serum

response factor; TAM, tamoxifen.

In human cells from ovarian cancer, GnRH agonists act not only on the mitogenic signaling of growth factor

receptors. They also induce the activation of activator protein-1 (AP-1). In addition, GnRH agonists promote

activation of JNK, which triggers AP-1 . In ovarian cancer cells, GnRH agonists stimulate neither phospholipase

C (PLC) nor protein kinase C (PKC) . In addition, GnRH agonists inhibit the mitogen-activated protein kinase

(MAPK, ERK) activity induced by growth factors . Therefore, GnRH-induced JNK/AP-1 activation depends not on

the AP-1 activators PKC or MAPK (ERK).

Since the JNK/c-jun signal transduction is activated by antiproliferative GnRH agonists and since JNK/c-jun is

integrated into the reduction of cell growth in different systems, it seems plausible that the JNK/c-jun signal

transduction participates in the inhibiting effects of GnRH agonists. GnRH agonists have also been shown to

induce the binding of JunD to DNA, resulting in a reduction of cell growth, as evidenced by an increased G0/1

phase of the cell cycle and reduced synthesis of DNA .

Expression of the immediate-early response gene c-fos is induced by 17β-estradiol (E2) in estrogen receptor α

(ERα)-positive ovarian cancer cell lines . Via MAPK-dependent phosphorylation of Elk-1 the

serum response element (SRE) is activated . Since GnRH agonists inhibit EGF-induced cell proliferation and

expression of c-fos through Ras/MAPK, it was interesting to know whether activation of SRE and expression of c-

fos induced by E2 in ERα-positive cancer cells is also influenced by GnRH agonists and whether GnRH inhibits

E2-driven cell proliferation . Resting ERα-positive/ERβ-positive cancer cell lines were stimulated to proliferate by

treatment with E2. Simultaneous treatment with GnRH agonists prevented this effect in a time- and dose-

dependent manner . ERα-negative/ERβ-positive cell lines were not affected by treatment with E2. Furthermore,

E2 activates serum response element (SRE) and expression of c-fos in ERα-positive / ERβ-positive cell lines. This

was inhibited by GnRH agonists . GnRH agonists had no influence on the activation of estrogen response

element (ERE) caused by E2. Transcriptional activation of SRE by ERα is due to activation of the mitogen-

activated protein kinase (MAPK) pathway. GnRH inhibits this signal transduction, resulting in a decrease in E2-

induced SRE activation followed by a decrease in E2-mediated c-fos expression. This is causative for a reduction

in E2-induced cell growth .
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Activation of PTP by GnRH also inhibits Src/MMP/HB-EGF signaling via the G-protein βγ subunit of G-protein

coupled estrogen receptor 1 (GPER1), a membrane-bound estrogen receptor . Due to the inhibition of

GPER signaling, cancer cell proliferation by E2 in breast cancer cells without expression of ERα was inhibited 

. In human breast cancer cells, GnRH analogs counteract EGF-dependent proliferation. GnRH analogs likely

disrupt the change in growth regulation from estrogen dependency to EGF dependence that occurs after the

acquisition of secondary resistance against 4OH-tamoxifen. This disruption of EGF receptor signal transduction re-

sensitized the resistant cell lines for a therapeutical use of 4OH-Tamoxifen . Especially in breast cancer, GnRH

is not only involved in cancer cell proliferation. In metastatic breast cancer cells, GnRH inhibits cell invasiveness in

vitro and metastasis in vivo . In addition, it was shown that GnRH is involved in epithelial to

mesenchymal transition (EMT) . However, these effects of GnRH still have to be researched in ovarian cancer in

the future.
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