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The rapid growth of global aviation operations has made its negative environmental impact an international

concern. Accurate modeling of aircraft fuel burn, emissions, and noise is the prerequisite for informing new

operational procedures, technologies, and policies towards a more sustainable future of aviation. Due to the

advances in big data technologies and effective algorithms, the transformative data-driven analysis has begun to

play a substantial role in aviation environmental impact analysis. The integration of statistical and machine learning

methods in the workflow has made such analysis more efficient and accurate.

data-driven methods  statistics  machine learning  aviation environmental impact

1. Introduction

With the rapid growth of global air traffic operations in the past five decades, the aviation industry has grown to

become an integral part of the global economy. While the global air transportation operations at scale have greatly

facilitated people’s travel and business, their negative environmental impact, also identified by some entities as the

most significant adverse impact of aviation , has emerged as a major concern internationally. The three primary

aspects of aviation’s negative impacts on the environment are: (1) local air quality impacts that can exacerbate

health-harming air pollution, (2) climate change impacts that can accelerate global warming, and (3) community

noise impacts that can undermine affected population’s mental well-being . Undoubtedly, the aviation industry

must keep the development momentum to meet the needs of a growing economy while simultaneously being more

environmentally sustainable. The system must operate harmoniously within the constraints imposed by requisites

such as clean air and water, limited noise impacts, and a livable climate.

Aircraft, ground vehicles, Ground Support Equipment (GSE), and other stationary sources at the airport produce

emissions as a result of the combustion of fuel. Aircraft engines mainly produce carbon dioxide (CO2), which

comprises around 70% of the exhaust, and water vapor (H2O), which comprises around 30% of the exhaust. Less

than 1% of the emissions is composed of nitrogen oxides (NOx), carbon monoxide (CO), sulfur oxides (SOx),

partially combusted or unburned hydrocarbons (HC), particulate matter (PM), other trace compounds, soot and

sulfate aerosols, and increased cloudiness due to contrail formation . These emissions undergo complex

interactions among themselves and with the changing background atmosphere . Among the aircraft pollutant

emissions, around 10% are emitted near the surface of earth (below 3000 ft above ground level) while the

remaining 90% are emitted at above 3000 ft, mostly at cruise altitudes within the Upper Troposphere and the Lower

Stratosphere (UTLS). While aviation technologies have become more fuel efficient, the overall emissions from

[1]

[2]

[2][3]

[4]



Machine Learning in Aviation Environmental Impact Analysis | Encyclopedia.pub

https://encyclopedia.pub/entry/41124 2/17

aviation has risen due to the rapidly increasing volume of air travel. Statistics reveal that the annually averaged

growth rate in global aviation CO2 emissions was 2.2% per year over the period 1970 to 2012 and 5% per year for

2013 to 2018. In 2018, global aviation CO2 emissions exceeded 1000 million tonnes per year for the first time,

which accounts for approximately 2.4% of all anthropogenic emissions of CO2 (including land use change) .

These observations indicate that aviation emissions remains a challenging issue towards a more sustainable future

of aviation.

Aircraft noise pollution refers to the “unwanted sound” produced by aircraft or its components in flight. In general,

aircraft noise is produced by three main sources. Engine noise is the main source of aircraft noise. For propeller

aircraft and helicopter, engine noise includes both aerodynamically induced noise from the propeller and

mechanically induced noise from other moving parts of the engine. For jet aircraft, engine noise is dominated by jet

noise from the gas turbine engines, which is responsible for much of the aircraft noise during takeoff and climb. Jet

noise is caused by the high speed flow leaving the exhaust of the engine which is highly unstable and turbulent.

Aerodynamic noise is the second source of aircraft noise. Aerodynamic noise arises from airflow around the aircraft

fuselage and control surfaces and increases with aircraft speed and air density. Supersonic aircraft, such as fighter

jets, often creates intense aerodynamic noise called sonic boom due to the formation of shock waves during

supersonic flight. Aerodynamic noise can sometimes be mitigated by designing the shape of airframe. The third

source of aircraft noise is the aircraft systems. Some examples include noises from the Auxiliary Power Unit (APU)

and the cabin pressurization and conditioning systems. Aircraft noise can disrupt sleep, cause community

annoyance, adversely affect academic performance of children, and could increase the risk for cardiovascular

disease of people living in the vicinity of airports .

2. Data Reduction

Performing complex analysis and computation on large datasets can be impractical or infeasible. In such cases,

data reduction is applied to obtain a reduced representation of the dataset that is much smaller in volume, yet still

closely maintains the integrity of the original dataset . Applying a reduced dataset in analysis and computation

trades accuracy for speed in response to the need of obtaining quick approximate answers to queries on large

datasets. The development of data reduction techniques for science and engineering applications has gained

increasing interest in the community. The motivation behind the trend is that contemporary operations, scientific

observations, experiments, and simulations are generating unwieldy amounts of data which are beyond people’s

capacity to store, stream, analyze, and archive. In the meantime, these massive datasets almost always contain

redundancies and trivialities.

Data reduction strategies mainly include three broad categories: dimensionality reduction, numerosity reduction,

and data compression. Dimensionality reduction techniques reduce the number of attributes/features p under

consideration. Some dimensionality reduction methods, such as Principal Components Analysis (PCA) and wavelet

transform, aim to transform or project the original data onto a lower-dimensional space. Other methods such as

attribute subset selection detect and remove non-informative, irrelevant, and redundant attributes from the full

feature set. Numerosity reduction, on the other hand, reduces the number of data points n in the original dataset.
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Numerosity reduction can be classified as either parametric or nonparametric. For parametric methods, the data is

represented by a parametric model which consists of model form and model parameters. After the modeling

process, only the model parameters are stored instead of the actual dataset, thus reducing the size of the data.

Some examples of parametric data reduction methods include regression models, log-linear models, and graphical

models. For nonparametric methods, the data reduction process does not assume a specific parametric model for

the data. Therefore, nonparametric methods are overall more flexible yet more challenging. Some typical examples

of nonparametric data reduction methods include histogram, clustering, sampling, and data cube aggregation. Data

compression is the third category of methods which first transforms the original data into a compressed

representation, then reconstructs the data in a later recovery process. Data compression belongs to either lossless

or lossy, depending on whether the original data can be reconstructed from the compressed representation without

any information loss. In general, the computational time of a data reduction process should not outweigh the

amount of time saved by analyzing the reduced dataset.

In most cases, data reduction is a step before data-driven simulation for estimating aviation environmental impacts,

on either the aircraft-level or the fleet-level. The data-driven simulation relies on aircraft flight data to ensure that

the simulation result can closely reflect real-world operations. Nevertheless, conducting computation and

evaluation for a massive amount of operations and models can be infeasible. Therefore, data reduction is

necessary to extract a small amount of representative data and models for efficient yet accurate analysis. Overall,

there have been three primary usages of data reduction in aviation environmental impact analysis: representative

data, representative models, and representative operations. Representative data refers to a small subset of data

points which can closely maintain certain characteristics of the population. For example, in probabilistic analysis

and many common scenarios, the small subset should retain the same data distribution as the complete dataset.

Reference  proposes a distributional data reduction method PREM which outperforms random sampling at very

small sample sizes. PREM enables efficient simulation-based uncertainty propagation in the uncertainty

quantification of aircraft fuel burn and emissions in real-world operations. Representative models involve both

numerosity reduction and dimensionality reduction. The need for numerosity reduction is due to the fact that there

exists a substantial amount of aircraft types to model, where each aircraft type is a unique combination of airframe

and engine. Because building aircraft noise and performance (ANP) model for each aircraft type takes a long and

rigorous process, Reference  selects a small proportion of representative aircraft models that can sufficiently

cover the richness and complexity in the population for detailed modeling. References  select representative

aircraft types for efficient fleet-level noise contour and emissions computation. On dimensionality reduction,

Reference  conducts a feature selection study to find a reduced set of aircraft features which are most influential

to different environmental impact metrics. Representative operations refer to the flight procedures, trajectories, or

profiles that can be utilized to model aircraft fuel burn, emissions, and noise. References  apply

clustering on large datasets to group flight trajectories and extract the most representative trajectories. Some

works, such as , take a step forward to convert the representative flight profiles into parameterized forms.

Reference  also applies probabilistic modeling on the representative mission profiles and account for uncertainty

in the process. These representative information from real-world operations have made aviation environmental

impact modeling closer to the reality in an efficient manner.
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3. Efficient Computation

Since computer simulation/experiment became an indispensable part in contemporary engineering design

optimization and systems analysis problems, computational efficiency has been a major concern in such processes

due to two main reasons. First, high-fidelity simulation and analysis models are typically computationally expensive

and time consuming. One common approach to tackle this challenge is the Surrogate-Based Analysis and

Optimization (SBAO)  approach which relies on surrogate models to provide fast approximations of the

sophisticated high-fidelity models. Second, the design optimization of a complex system inevitably involves the

exploration of a broad design space. This usually translates to a large number of candidate design points and

simulation runs, depending on the actual size of the design space and the number of design parameters. Some

statistical and data-driven approaches can further reduce the number of simulation runs to improve the efficiency.

Overall, these two facts can lead to excessive computational costs and prohibitive run times in engineering design

and analysis process. Two typical examples of the computationally expensive simulations in the design and

analysis of aerospace systems are Computational Fluid Dynamics (CFD) and multidisciplinary vehicle modeling.

Aviation environmental impact analysis can also be computationally expensive, because performing high-fidelity

fuel burn, emissions, and noise analyses for a air transportation system is a massive task. Take aircraft noise

modeling as an example, depending on factors such as the number of aircraft operations, the size of the region,

the length of the time interval, and the fidelity level of the models, the current state-of-the-art noise modeling

capabilities could require long setup and computational times for a single case study. A previous study  reported

that running the high-fidelity Integrated Noise Model (INM) to perform airport-level noise study for a four-parallel-

runway airport in crossflow takes between two days to two weeks to finish. Another example is the Aviation

Environmental Design Tool (AEDT), a software system that models aircraft performance in space and time to

estimate noise, fuel consumption, emissions, and air quality consequences . A study  reported that on the

AEDT, a national-level noise study comprising a moderate number of airports and flights could take several days to

complete.

These representative works involving efficient computation can be classified into three generic groups. The first

group employs surrogate models or reduced-order models (ROMs) to reduce the computational complexity of the

complicated models and therefore reducing the computational time. In some literature, this is also referred to as

“meta modeling”. The authors of  construct a response surface model to approximate the computationally

expensive Community Multiscale Air Quality (CMAQ) modeling system for fast evaluations of aviation’s impacts on

air quality. The authors of  apply ROM on AEDT’s noise model to develop a rapid noise prediction capability. The

second group builds rapid integrated analysis capabilities for fleet-level aviation environmental impact modeling.

Such rapid fleet-level analysis capabilities could consist of elements such as simplified models, generic aircraft and

operations (with connections to data reduction), and some pre-computed outcomes. The authors of  develop the

airport noise grid integration method (ANGIM) which uses simplified methods and offline computational results for

generic aircraft operations to enable rapid fleet-level noise modeling. The authors of  propose the GENERICA

method which leverages methods such as classification algorithms, designs of experiments, surrogate models, and

multi-criteria decision-making to identify better baseline models than the traditional representative-in-class vehicles,
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also called “average generic vehicles”, for more realistic approximation of fleet-level environmental impact results.

The authors of  develop the Rapid Environmental impact on Airport Community Tradeoff (REACT) environment

to conduct rapid tradeoff by modeling different noise mitigation strategies’ noise exposure on the airport community.

The third group is hybrid data-driven approaches for efficient modeling. The authors of  use performance and

acoustic data from flight and wind tunnel tests to develop an efficient analytical model for helicopter Blade–Vortex

Interaction (BVI) noise during maneuvering flight. The authors of  combine physics-based model and aircraft

performance data to build an efficient and accurate “data-enhanced surrogate model” for aircraft fuel consumption.

The authors of  develop Fuel Estimation in Air Transportation (FEAT), a rapid analysis framework, by using a

high fidelity flight profile simulator and a reduced order fuel burn model. These efficient models have contributed to

the aviation environmental analysis tool-suite that enable rapid assessment and evaluation, which is crucial

especially for preliminary analysis.

4. Predictive Modeling

With the ultimate objective of making accurate predictions, predictive modeling is one of the most typical tasks of

machine learning. In contrast to the specific machine learning or data mining techniques which uncover patterns in

data, predictive modeling encompasses the entire process of developing a mathematical model in a way that we

can understand and quantify the model’s accuracy on predicting future, yet-to-be-seen data . Steps such as

data pre-processing, model tuning, performance measurement, and model selection are of critical importance in

the predictive modeling process. Therefore, to a certain degree, predictive modeling is highly similar to the machine

learning engineering process. Although the foremost objective of predictive modeling is to make accurate

predictions, a secondary interest is to interpret the model and understand how it makes prediction. On certain

problems, interpretation could be just as important, and this involves a tradeoff between accuracy and

interpretation. Overall, a more accurate model is often associated with higher model complexity and lower

interpretability.

Predictive models mainly include regression models and classification models, which predict continuous and

categorical responses, respectively. Under each category, depending on whether a model is based on linear

combinations of the predictors, different models can be further divided into linear models and nonlinear models.

Although different models differ by the model form, number of parameters, and overall complexity, no predictive

model is universally superior in every problem. Practitioners are encouraged to explore a diverse set of models for

any given problem and identify the best predictive model . A key foundation to the success of predictive

modeling is the practitioner’s domain knowledge and deep understanding of the problem. When predictive signal

exists in a dataset, even a naive model can capture some degree of predictive power. The domain knowledge

applied to the modeling process is what distinguishes a great model from good models. In a serious decision

making process, neither data-driven predictive model nor expert intuition will do better than a combination of both.

Most of these representative papers were published after year 2018. Although classification models can find

applications in many data-driven analysis tasks in aerospace and transportation domains (e.g., flight risk

identification), the predictive models for aviation environmental impact analysis are mostly regression models.
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Some recent works have started to adopt advanced model architectures on more complex data forms to predict

aircraft fuel burn, emissions, and noise. Among some of the earlier works, Reference  uses Gaussian Process

Regression (GPR) and Probabilistic Graphical Model (PGM) to develop a wind forecasting model, which informs

improved flight route planning to reduce environmental impact of aviation. Some advanced set-ups in statistics and

machine learning are used to more accurately estimate aircraft fuel consumption. In a series works to improve

aircraft fuel efficiency, Reference  first applies ensemble learning to improve the prediction of discretionary fuel

and construct uncertainty intervals for the predictions. After that, Reference  utilizes quantile regression to

estimate the Statistical Contingency Fuel (SCF) from a large fuel burn dataset from airline. The rest of the papers

adopt different types of deep learning models. To minimize transport aircraft emissions and save fuel, Reference

 applies neural network whose topology is optimized by genetic algorithm on flight data to predict fuel

consumption. The authors of  use a type of feedforward neural network called covariance bidirectional extreme

learning machine (CovB-ELM) to predict aircraft trajectory and the associated fuel consumption. There is also a

significant trend which employs Recurrent Neural Network (RNN) to model sequences of data. The authors of 

apply Long Short Term Memory (LSTM) neural network on Flight Data Monitoring (FDM) data records to estimate

aircraft on-board parameters such as the fuel flow rate for enhancing the system’s efficiency. The authors of 

apply sequence-to-sequence LSTM on large radar and noise datasets to predict ground level aviation noise and

evaluates the model using real-world noise measurements. The authors of  use a combination of LSTM and

extreme gradient boosting (XGBoost) to predict short-term flight emissions within enroute airspace. The last two

papers apply the more advanced physics-informed learning approaches which combine data-driven model with

physical model to predict specific problems more effectively. The authors of  use physics-guided deep learning

to model aircraft fuel burn. To outperform both the traditional physics-based models and the common supervised

learning approaches, the authors: (1) guide the neural network with fuel flow dynamics equations, and (2) embed

physical knowledge as extra losses in the model training process. The authors of  use physics-guided neural

networks to predict propeller tonal noise with less experimental data, which can be difficult to collect. In some other

works, even applying methods like ordinal regression and neural network can achieve satisfactory results on

certain problems. Yet the more advanced more architectures and considerations have opened the door for a wider

variety of problems.

5. Uncertainty Quantification

Uncertainties related to imprecise assumptions, natural variability, and the presence of unknowns is not only an

unavoidable part of the real-world, but also a significant factor that could determine the success or failure of a

decision or system. At the intersection of mathematics, statistics, and engineering, Uncertainty Quantification (UQ)

is an interdisciplinary field that addresses the problems associated with incorporating real-world variability and

probabilistic behavior into the design and analysis of complex systems. UQ provides uncertainty information about

the Quantities of Interest (QoI) through characterizing, propagating, and managing uncertainties in a computational

or real-world system. The high degree of complexity and uncertainty associated with aviation environmental impact

analysis have driven practitioners towards the use of UQ in the modeling process.
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Different sources of uncertainty can be generally categorized as either epistemic uncertainty or aleatory

uncertainty. The former is caused by a lack of knowledge and is possible to be reduced by collecting more

information. Aleatory uncertainty, on the other hand, results from the intrinsic randomness of nature. Therefore, it is

beyond people’s ability to reduce aleatory uncertainty through gathering additional information. Some previous

research efforts  explore how to deal with both types of uncertainties. Common sources of uncertainty can be

classified into four categories:

Inputs uncertainty: The inputs of a model/system may have inherent uncertainty and substantial variation

around a deterministic value.

Model uncertainty: All models are “wrong” because they inevitably include assumptions, approximations, and

errors and are therefore not exact representations of reality. Two aspects of uncertainties related to model are

model-form uncertainty and uncertainty about parameters within the model.

Computational and numerical uncertainty: Normally numerical errors from running simulations or solving

mathematical models, including simplified equations, convergence error, truncation, etc.

Physical testing uncertainty: A result of uncontrolled or unknown inputs, measurement errors, and limitations

in the design and implementation of tests.

In aviation environmental impact analysis, UQ is generally used to: (1) understand the uncertainties inherent in a

complex model or software systems, (2) predict system responses across uncertain inputs and quantify confidence

intervals, (3) understand the key contributors to model output variations, and (4) inform researchers of directions

for future model development and enhancement. A summary of representative papers in uncertainty quantification

is given in Table 5. Several works, such as , encompass surrogate modeling in their UQ approach as well,

because it is common to use simulation-based methods, such as MCS, for uncertainty propagation. This process

learns the distributions of the nondeterministic outputs through a large number of experiment runs on the

sophisticated analysis code and is impractical without surrogate model. Hence, surrogate model is a vital enabler

to efficient UQ and design optimization. Some earlier works perform a complete UQ process on a complex aviation

environmental model. Both  conduct a UQ study on AEDT to better understand the uncertainties in AEDT

estimations and identify priority aspects for future research and development. Also based on AEDT, Reference 

conducts a sensitivity analysis for fleet-level environmental impacts to changes in operational uncertain factors for

the optimization of flight operations to mitigate aviation environmental impacts. The authors of  perform rapid

computation and UQ on the global fleet-wide simulation of aviation emissions for rapid and robust policy analysis.

On the data-driven approach, Reference  uses Gaussian Process Regression (GPR) to quantify uncertainty in a

data-driven 4D flight trajectory prediction problem and gain insights on uncertainty reduction—an important

objective of UQ. Some works focus on novel UQ methodologies and make contributions in methodology

development. Inspired by multidisciplinary analysis and optimization, Reference  proposes a decomposition-

based approach to quantify uncertainty in multi-component systems and applies the method to perform uncertainty

analysis and sensitivity analysis for the environmental impacts of new aircraft technologies and operations. When
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only limited data is available for UQ, Reference  develops a nonparametric approach to characterize and

propagate uncertainty, which is more flexible and does not introduce unwarranted assumptions into the process.

Some latest works initiate the trend of performing UQ on the environmental impact of future aircraft configurations.

The authors of  perform UQ on the noise of a Hybrid Wing–Body (HWB) aircraft configuration at the noise

certification locations. The authors of  perform system noise assessment and UQ for a conceptual supersonic

aircraft and identifies factors that could significantly affect the concept’s Landing and Takeoff noise (LTO) noise.

Since robustness is a key consideration in the design and analysis of complex aerospace systems, UQ will

continue to play a substantial role in the design and analyze of sustainable aviation system.

6. Pattern Discovery

Pattern discovery (or knowledge discovery) is a term commonly seen in data mining. A pattern generally refers to

some useful information in the data that can guide action or decision-making. Some simple patterns include total,

ratio, correlation, variation, etc. Examples of the (slightly) more complex patterns include emerging trend, receding

signal, alternating behaviour, and spatiotemporal variation. Statistical and machine learning methods provide

techniques to discover patterns from data. The following types of non-chaotic patterns can be found in data:

Descriptive patterns: The identification of these patterns usually do not involve advanced algorithms. They are

obtained through descriptive statistics or sometimes the direct results of data collection.

Associative patterns: These patterns are mainly about co-occurring phenomena. A typical statement of

associative pattern is: “If A happens, then B is also likely to happen”.

Periodic patterns: These patterns repeat themselves with a specific period, which can be found in time series

data, sequence data, and spatiotemporal data.

Structural patterns: These patterns are extracted summary information represented in terms of a structure that

can be reasoned about. There are different structural forms such as graphs, trees, sets, clusters, etc.

Abnormal patterns: A substantial divergence from normal behaviour is considered abnormal. These

abnormalities could be signals of risk or opportunities for novel discoveries.

In aviation environmental impact analysis, the discovered patterns on aircraft fuel burn, emissions, and noise can

provide insights for aviation and environmental analysts to make decisions and plans for mitigating aviation’s

environmental impact and achieving sustainable air traffic growth. Some patterns can be directly discovered by

analyzing existing datasets on aviation environmental impact. Most of the time, however, the dataset for a target

study is not available. For example, if a researcher wants to obtain the quantity and distribution of a certain

emission type over a continent, it would be impractical to obtain such measurements via sensors and instruments.

In such cases, data-driven flight simulation become a key enabler for computation and pattern discovery. Data-

driven flight simulation utilizes real-world flight operations data, such as ADS-B, and “flies” the aircraft in an
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computational environment. The aircraft furn burn, emissions, and noise are computed using aircraft performance

models, such as Base of Aircraft Data (BADA), and noise models. Since the real-world flight data reflects how

aircraft operate in time and space, with reliable performance and noise models it is possible to obtain decent

approximations of the real-world situations. The estimations resulting from data-driven flight simulations are then

ready to be analyzed by statistical and machine learning methods to discover useful patterns.

In one of the pioneering works, Reference  develops an aviation emission inventory and discovers the disparity

of CO2 concentration in different parts of Australia. The authors of  use flight track data and fast noise

approximation model to observe the variability in noise patterns on evolving airport runway configuration at Boston

Logan International Airport (KBOS). The authors of  use ADS-B data and OpenAP emission models to obtain

cruise-level flight emissions for different airlines, geographic regions, altitudes, and timeframe. The authors of 

employ ADS-B and flight performance model to study aviation emissions at altitude and finds out that NOx and

water vapour emissions concentrate around tropospheric altitudes only for long-range flights. The authors of 

use similar approach to analyze fuel burn and emissions for a network of short-haul commuter flights in Europe.

Through analyzing fuel burn and emissions as function of distance, altitude, city pair, the conclusion is that flight

range is the most significant discriminator in emissions. The authors of  extend such simulations to global-

scale. Together with a clustering step, Reference  studies the transport patterns and climate impacts of aviation-

emitted NOx and highlights the spatially and temporally heterogeneous nature of the NOx–O3 chemistry in different

regions and seasons around the globe. The authors of  estimate global emissions from aircraft operations

between 2017–2020 and quantifies the impact from COVID-19. Deep learning is a powerful tool in finding aircraft

emissions patterns in a more complex setting. The authors of  apply Convolutional Neural Network (CNN) on

satellite images to detect aircraft contrails—a contributor of climate warming effect. The project estimates that

contrails cover an average of 0.55% of the contiguous U.S. and discovers detailed patterns of contrail coverage.

The above findings are key information for people to understand the status and patterns of regional and global

aviation environmental impact. With continued advancements in data quantity, aircraft performance models, and

analytical techniques, such data-driven approaches can make even better contributions to sustainable aviation.

7. Verification and Validation

Verification and validation (V&V) are evaluation procedures throughout the development phase to assess whether

a system, product, or process meets the requirements and specifications that are initially set in the proposal. V&V

are an integral part of the systems engineering processes to ensure the success of a project. Sometimes such

procedures need to be executed by a disinterested third party and are referred to as Independent Verification and

validation (IV&V). Verification is the procedure of comparing the solution to the requirements. Verification uses

examination, demonstration, analysis, and testing to answer the query “are you building it correctly?”. A verification

procedure takes as input a system/product/process A and the requirements Q, and returns whether A is satisfactory

(all behaviors of A meet Q) or unsatisfactory (at least one behavior of A

violates Q). Data-driven verification is a novel research area that combines numerical simulation with sensitivity

analysis to provide bounds on how much the states of a system/product/process can change in a non-deterministic
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setting . In contrast, validation is the procedure of checking whether a system/product/process meets the needs

of the user and other stakeholders. Validation involves review, demonstration, and testing to answer the query “are

you building the correct thing?”. Validation is of vital importance because the cost of fixing a user requirement error

is very higher—usually much higher than fixing an implementation error.

V&V has become an essential part in the development of a complex model or software, especially for a field that is

safety-critical in nature. Because of the complexities in modeling the environmental impact of aircraft and air

transportation system, relevant computational tools are complex and multi-module systems as well. The

computational models for aviation environmental impact could leverage data processing, flight simulation, aircraft

performance models, emissions models, noise models, large aircraft databases, Geographic Information System

(GIS), and extensive system databases cover airports, airspace, and fleet information for accurate modeling.

Therefore, it is indispensable to conduct V&V in all levels of the system to make sure that the environment

functions properly.

Enabled by data-driven simulation and statistical analysis, two common practices are seen in these works: (1)

comparing the predictions between different models, and (2) comparing the model predictions with real-world

measurements. The results of V&V can guide actions to further enhance the analysis capabilities. Among these

works, Reference  performs a V&V study on AEDT’s emission inventory and air quality modeling capability and

investigates causes behind the deviation between AEDT and the legacy tool Emissions and Dispersion Modeling

System (EDMS). Still on AEDT, Reference  provides a structured and repeatable framework for validating

AEDT’s noise model using detailed airline flight data records, weather data, and noise monitoring data from

stations around airport. The authors of  compare thousands of the actual single flight noise exposure

measurements with predictions from three noise models: AEDT, FLULA2, and sonAIR. To understand a helicopter

noise prediction system’s limitations, Reference  compares its Sound Exposure Level (SEL) noise contours with

the acoustic flight test data for a range of flight conditions. The authors of  conduct a validation for an integrated

aircraft environmental simulation software’s acoustic and engine exhaust emissions modules using the microphone

field measurements at Manchester airport for a range of aircraft types. The authors of  compare predictions from

the “Dutch aircraft noise model” to measured values from the NOise MOnitoring System (NOMOS) around

Amsterdam Airport Schiphol between 2012 and 2018 and observes how the model accuracy has changed

overtime. The authors of  conduct a sensitivity analysis on semi-empirical noise models and compares the

predictions to flyover measurements of A320, A330, and B777. The authors of  present a validation methodology

for the noise impact of delayed deceleration approach, a new procedure, using ground-noise-monitor

measurements and radar data for several aircraft types. Most of these studies confirm that the aviation

environmental impact models can achieve satisfactory accuracy on their predictions. Some works also identify

reasons behind the mismatch and modify the models accordingly to obtain better agreement between modeled and

measured values.

8. Infrastructure and Tools
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The research outcomes from all the previous themes have direct impacts on the methodology and/or actual

findings of aviation environmental impact analysis. This theme devoted to infrastructure and tools is special

because the relevant efforts may not lead to immediate breakthroughs on the more efficient and accurate models

of aviation environmental impact. Instead, they lay the foundations for data-driven researches and make them

happen. Undeniably, the efforts on building infrastructure and tools to collect, integrate, clean, and process data

are an indispensable part of the ecosystem and have notably streamlined data-driven analysis in aviation.

Different types of works under this theme can be classified into: (1) hardware system, (2) data repository, and (3)

data integration and pre-processing tools. Even these infrastructures and tools are built for aviation researchers

and data scientists to perform more complex analyses, such as machine learning tasks, most of them are also

capable of preliminary data analysis and data visualization. On the hardware design side, Reference  presents

the system architecture, design, and capabilities of a modern hardware/software infrastructure called the Metroplex

Overflight Noise Analysis (MONA). MONA is a system to measure, analyze, and archive the ground noise data

from aircraft overflights for a variety of purposes, such as V&V of improved noise prediction methods. It also has a

strong data visualization capability. The authors of  propose DV8—an interactive data visualization framework

which provides visualized aviation-oriented insights for capacity planning, flight route prediction, and fuel

consumption. Data repository is another crucial part of the infrastructure. Threaded Track  integrates radar

trajectory data from a variety of surveillance sources to produce an optimal representation of an aircraft’s end to

end trajectory. Since its inception, Threaded Track has facilitated data-driven analyses for aviation safety and

environmental impact. WRAP  is an open-source database which includes extracted full-flight aircraft

performance parameters from large scale open ADS-B data. Apart from the aircraft performance parameters,

WRAP also provides the first set of open parametric performance models for common aircraft types. Flight DNA 

is one of the latest aviation data repositories. It is a common database with anonymized data on aviation

components, systems, technologies, and operations. On the data pre-processing tools, there has been a significant

trend to convert them into open-source libraries for popular programming languages such as Python and R. traffic

 is a Python toolbox for pre-processing and analyzing aircraft trajectories data so that they are better prepared

for statistical modeling and machine learning. pyModeS  is another open-source library in Python. The focus of

pyModeS is to decode the Mode-S Comm-B replies and provide researchers broader access to accurate aircraft

state updates that are transmitted via Enhanced Mode-S. openSkies  is the first R package for processing public

air traffic data. It has an interface to resources in the OpenSky Network, standardized data structures, and

functionalities to analyze and visualize data. In the future, continued development of infrastructures and tools for

aviation data analytics is a key to promoting data-driven transformation for mitigating aviation environmental

impact.
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