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CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride,

bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Here, we summarize recent insights

into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct,

including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current

knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the

perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and

introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its

role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.

CFTR  cystic fibrosis  pancreatitis  bicarbonate

1. Introduction

Cystic fibrosis (CF) is a potentially fatal multi-organ disease caused by mutation of the cystic fibrosis

transmembrane conductance regulator (CFTR) gene. It is estimated that CF currently affects >100,000 people

worldwide, and that by 2025, the number of patients will increase by 50% . CFTR encodes a phosphorylation-

regulated, adenosine triphosphate (ATP)-gated, epithelial anion channel that mediates chloride (Cl ) and

bicarbonate (HCO ) transport across epithelia, principally located in the respiratory, gastrointestinal and male

reproductive tracts. The term cystic fibrosis refers to the CF-typical fibrotic lesions in the pancreas, first described

in the 1930s . In approximately 85% of CF patients, fibrosis of the pancreas starts in utero, progressing to a

complete loss of exocrine pancreas function soon after birth, i.e., exocrine pancreatic insufficiency . The severely

reduced release of HCO  and digestive enzymes into the upper intestinal tract impairs the neutralization of gastric

acid and causes malabsorption of nutrients.

Pancreatitis is a complex inflammatory disease of the acinar and ductal epithelia, which probably results from

premature activation of digestive enzymes . Currently, there is no specific therapy available, and treatment relies

on supportive care. Pancreatitis is one of the three most common causes of gastrointestinal disease-related

hospitalizations and is associated with high morbidity and mortality . Acute pancreatitis (AP), recurrent AP (RAP)

and chronic pancreatitis (CP) are thought to represent a disease continuum . As opposed to the monogenic

disease CF, in pancreatitis, multiple (epi-)genetic, metabolic and environmental factors combine and lead to a

complex pathology . A substantial body of evidence indicates that the loss of ductal CFTR-dependent fluid and

HCO  secretion may precipitate the development of pancreatitis . This is perhaps most poignantly illustrated by
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the fact that pancreas-sufficient CF patients, i.e., those who have retained some level of exocrine pancreatic

function, are at increased risk of developing (R-)AP and CP . Furthermore, it has been shown that carriers of a

CF allele are at increased risk of developing pancreatitis .

CFTR-mediated HCO  secretion not only drives osmotic fluid secretion in ductal structures but is also required for

controlling the pH at the epithelial surface, and the proper expansion of secreted mucins. Thus, in CF, a lowering of

the luminal pH is thought to result in the accumulation of a hyper-viscid mucus that blocks the ductal structures and

promotes microbial colonization and inflammation. In addition, in the pancreas, high levels of HCO  are thought to

maintain secreted digestive enzymes in an inactive state while still located in the ductal tree .

In view of the apparent relevance of HCO  in the pathophysiology of CF and CFTR-related disorders (CFTR-RD)

such as pancreatitis, it is perhaps surprising that most research into the function of CFTR has focused on its role

as a Cl  channel . Perhaps due to the fact that it is readily formed from and converted to CO  and H O, accurate

assessment of HCO  concentrations and transport is challenging, which may explain why CF biomarkers and

therapy testing are Cl  biased . This is true for clinical nasal potential difference (NPD) and sweat Cl  tests

which are Cl  based, as well as CFTR modulator testing which is based on iodide quenching or membrane

potential measurements, while intestinal current measurements (ICMs) and forskolin-induced swelling (FIS) assays

measure combined Cl  and HCO  transport.

2. Bicarbonate Transport in the Exocrine Pancreas

2.1. CFTR Is Indispensable for the Accumulation of Bicarbonate in Pancreatic Juice

In the exocrine pancreas, acinar cells secrete various digestive enzymes in a small volume of isotonic, NaCl- and

H -rich fluid, after which the ductal epithelium serves to exchange the secreted Cl  for HCO , to produce an

alkaline fluid (pH 8.0–8.5) . It is estimated that the human exocrine pancreas secretes up to 1 L of

pancreatic juice per day . Apart from delivering digestive enzymes to the proximal small intestine, making it

essential for digestion of (macro-)nutrients, pancreatic juice serves to supply base equivalents for neutralization of

the gastric acid entering the small intestine from the stomach. In humans, the HCO  concentration in pancreatic

juice can reach levels of 140 mmol/L . Similarly high levels of HCO  were observed in pancreatic juice of

guinea pigs, whereas, in contrast, in mice and rats, HCO  levels did not exceed 70 mmol/L .

In humans, the production of pancreatic juice is strongly dependent on postprandial release of the hormone

secretin, whereas production is low during fasting. Secretin, through activation of Gα,s-coupled receptors, triggers

cyclic AMP (cAMP) production and a consequent protein kinase-mediated phosphorylation and activation of CFTR.

In humans, CFTR-mediated, cAMP-dependent ductal fluid secretion is strongly potentiated by parasympathetic,

vagal stimulation. Most plausibly, the activation of muscarinic (Gα,q) receptors by acetylcholine triggers K  efflux

through Ca -dependent K  channels, which sustains the negative electrical potential across the luminal plasma

membrane driving Cl  and HCO  efflux through CFTR. In addition to cholinergic neurons, the parasympathetic
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system comprises neurons that produce vasoactive intestinal polypeptide (VIP), which, as with secretin, activates

Gα,s-coupled receptors.

2.2. Molecular Mechanisms of CFTR-Dependent Bicarbonate Transport

HCO  secretion involves the coordinated activity of ion transporters located at the basolateral and luminal

membranes of pancreatic ductal cells (PDCs) (Figure 1). According to current models, which are discussed in

detail elsewhere, uptake of HCO  from the interstitial space is principally mediated by a Na /HCO  cotransporter

(NBCe1, SLC4A4) located in the basolateral plasma membrane . This transport is driven by the steep

electrochemical Na  gradient across the plasma membrane (generated by Na ,K -ATPase activity) and allows for

intracellular accumulation of HCO  up to levels well above electrochemical equilibrium. In addition, HCO  may be

produced intracellularly from carbonic anhydrase-catalyzed hydration of CO , which enters the cells through

diffusion (Figure 1). While the protons produced in this reaction are extruded across the basolateral plasma

membrane via a Na /H  exchange mechanism, HCO  is secreted across the apical membrane into the ductal

lumen via the coordinated activity of the CFTR channel and the Cl /HCO  exchangers SLC26A6 and, more

tentatively, SLC26A3 . According to this model, which may also be relevant for other HCO -secreting

epithelia such as the intestinal and biliary epithelia, CFTR serves to facilitate Cl /HCO  exchanger-mediated

HCO  secretion by extruding the Cl  ions absorbed through the exchangers . As for CFTR, the activity

of Cl /HCO  exchangers is stimulated by cAMP and Ca  agonists, which implies that their activity is also

controlled through neuro-endocrine stimulation of Gα,s- and Gα,q-coupled receptors . CFTR may not only

couple functionally to SLC26A6, but also physically, through binding of its regulatory (R) domain to the sulfate

transporter anti-sigma (STAS) domain of SLC26A6 . This interaction was shown to promote Cl /HCO

exchange, even in the absence of CFTR activity .
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Figure 1. Model of HCO  secretion in pancreatic ducts. HCO  secretion is controlled by neuro-endocrine input,

chiefly by secretin (S) and acetylcholine (ACh), which increase cellular cAMP and Ca  levels, respectively, via

stimulation of G protein-coupled receptors. This triggers Na -coupled HCO  uptake across the basolateral plasma

membrane through NBCe1 and luminal HCO  efflux through CFTR and SLC26A6. HCO  may also be

accumulated intracellularly via the coordinated activity of carbonic anhydrases (CA) and a proton extrusion

mechanism, NHE1. Opening of K  channels sustains the negative membrane potential which drives (CFTR-

mediated) anion efflux. Cl  ions absorbed via SLC26A6 may be recycled to the ductal lumen via CFTR. Ultimately,

ductal ion and fluid secretion is driven by ion and electrical gradients that are maintained by Na ,K -ATP-ase,

located in the basolateral membrane. SR: secretin receptor; M3R: muscarinic acetylcholine receptor 3.

Although there is ample evidence for the role of SLC26-type Cl /HCO  exchangers in ductal HCO  secretion,

mathematical modeling of the ion motive forces in the ductal epithelium predicted that Cl /HCO  exchange

mechanisms only significantly contribute to cellular HCO  extrusion up to luminal HCO  levels of circa 70 mmol/L

. Consequently, SLC26-type HCO  transport mechanisms may serve to secrete HCO  in the proximal

segments of the ductal tree, but to reach the final, high HCO  levels observed in human pancreatic juice, an

alternative transport mechanism must prevail in the distal part. In view of these considerations, it seems plausible

that CFTR has a direct role in ductal HCO  secretion. The CFTR channel itself was shown to directly mediate

cellular HCO  transport in studies on both cell models and epithelial tissues, including pancreatic ducts 

. It has, however, also been noted that the permeability of the CFTR channel pore for HCO  is 4–5 times lower

than for Cl  . This implies that CFTR can only selectively secrete HCO  when very low intracellular Cl

and comparatively high HCO  concentrations are attained. This situation may occur in the distal part of the ductal
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tree where, upon hormonal stimulation of pancreatic secretion, Cl  levels in PDCs decrease to values as low as 5

mmol/L . In these settings, assuming that, concurrently, intracellular HCO  is actively accumulated through

NBCe1-mediated uptake, it is conceivable that CFTR may function primarily, if not exclusively, as a HCO

transporter.

To account for the high HCO  and low Cl  levels found in pancreatic juice, it has been further proposed that the

Cl  over HCO  conductance ratio of CFTR is not static but can be lowered to allow selective HCO  secretion 

. This dynamic regulation of CFTR anion conductance is thought to be mediated by members of the WNK

(with no lysine) type of protein kinases . WNK kinases (the family consists of four members) regulate an

array of ion transporters through activation of downstream protein kinases OSR1 (oxidative stress-responsive

kinase 1) and the highly homologous SPAK (STE20/SPS1-related proline/alanine-rich kinase) . The WNK

kinases are thought to function as osmotic stress sensors and are activated by a lowering of intracellular Cl  levels.

Notably, WNK1 and WNK4 control renal electrolyte transport, and mutations in either cause hypertension as a

result of an unchecked tubular Na  re-absorption. In most cases, WNK kinases regulate the activity of ion transport

mechanisms by controlling their localization in the plasma membrane.

At low extracellular Cl  concentrations, WNK1-mediated OSR1 and SPAK activation was shown to markedly

increase the HCO  permeability of CFTR in CFTR-transfected HEK293 cells and in guinea pig PDCs .

Interestingly, WNK1 activation depended on CFTR function as the change in HCO  permeability was not observed

in cells expressing non-functional, mutant (F508del) CFTR, suggesting CFTR is required for lowering of the

intracellular Cl  concentration. More recently, it was proposed that WNK1 increases the HCO  permeability of

CFTR by a direct interaction that does not require SPAK activation (Figure 2) . WNK kinases are also thought to

reduce the surface expression of Cl /HCO  exchangers of the SLC26A family . At high luminal HCO  levels

such as those encountered in the distal ductal tree, this silencing of Cl /HCO  exchange activity may prevent re-

uptake of HCO  and, consequently, promote its net secretion. Paradoxically, both WNK1 and WNK4 were also

shown to reduce CFTR protein levels at the cell surface and suppress CFTR-mediated anion efflux . Moreover,

WNK kinases may also reduce NBCe1 activity, suggesting that their activation opposes CFTR-mediated HCO

secretion . However, the inhibition imposed by the WNK/SPAK pathway on ductal fluid and HCO  secretion is

counteracted by the action of the scaffolding protein inositol-1,4,5-trisphosphate (IP ) receptor-binding protein

released with IP  (IRBIT) . Through its PDZ domain, IRBIT co-localizes at the apical and basolateral plasma

membrane with CFTR and NBCe1, respectively, and prevents WNK1/SPAK-mediated endocytosis by recruiting a

protein phosphatase (PP1) that counters SPAK-mediated phosphorylation of CFTR and NBCe1 . In

addition to its effect on surface expression, IRBIT may also increase the CFTR open channel probability .

Recruitment of IRBIT to these molecular complexes appears to be stimulated through cAMP and Ca  signaling,

and IRBIT is required for the synergism observed between these signaling pathways .
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Figure 2. Hypothetical model of the role of WNK and IRBIT in ductal HCO  secretion. (A) Activation of CFTR

decreases intracellular Cl , which relieves the inhibition imposed by Cl  on WNK and stimulates auto-

phosphorylation of the protein kinase. Activated WNK binds to CFTR and increases the HCO  permeability (P) of

the channel pore, independent of its protein kinase activity. However, WNK also recruits SPAK, which leads to a

phosphorylation-mediated decrease in the cell surface expression of HCO  transporters, including CFTR. (B)

IRBIT is bound to IP  receptors (IP3R) on cellular Ca  stores, e.g., the endoplasmic reticulum (ER). Conceivably,

IRBIT is displaced from IP3R upon a phospholipase C (PLC)-mediated increase in IP  production, after which it

translocates to the plasma membrane. Through its PDZ domain, IRBIT anchors to the actin cytoskeleton (not

shown) and recruits a protein phosphatase (PP1) to the WNK/SPAK complex. PP1 activity counteracts SPAK-

dependent phosphorylation of HCO  transporters, thus stabilizing their expression at the cell surface. IRBIT does

not affect the WNK-dependent but rather the SPAK-independent increase in CFTR HCO  permeability.

3. Bicarbonate Transport in Subjects with CFTR Mutations

The past decade saw great advances in understanding the genetics of pancreatitis, including the role of CFTR

mutations. Genes in which mutation confers an increased risk of developing (chronic) pancreatitis are grouped in

three categories: (1) the trypsin-dependent pathway including PRSS1, PRSS2, SPINK1, CTRC and CTRB1 

; (2) the misfolding-dependent pathway including CPA1  and CEL ; and (3) the ductal pathway which,

aside from CFTR, includes CLDN2 and CASR . CFTR mutations are associated with development and earlier

age of onset of RAP  and CP . In a large pediatric cohort, 34% of RAP and 23% of CP patients

carried CFTR mutations . In a group of RAP patients with a mean age of 23 years, 15% carried CFTR mutations

, and in a cohort of idiopathic CP patients, this number was nearly 20% . Up to 7% of all CP patients carry

CFTR mutations, and depending on the type of CFTR mutation, the risk for developing CP may increase 1.5- to 16-

fold . This risk increases 3- to 21-fold when CFTR mutations are combined with a mutation in SPINK1, which

encodes the pancreatic secretory trypsin inhibitor . The latter observation underlines the contention that

pancreatitis is a multifactorial, complex disorder that develops through an interaction of multiple genetic and/or

environmental factors. Consequently, the CFTR alleles that confer an increased risk of developing pancreatitis at

the population level only have a small effect on the individual risk .
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Typical environmental factors that, in conjunction with genetic factors, modify the risk of pancreatitis are alcohol

consumption and inhalation of tobacco smoke. As many as 40 to 70% of CP patients drink excessive amounts of

alcohol . Similarly, smoking is an independent risk factor for the onset and recurrence of AP ,

and 60% of CP patients regularly consume tobacco . CFTR mutations are more prevalent in alcohol- and

smoking-related CP patients than in the general population, suggesting that partial loss of CFTR function

aggravates the effect of such environmental factors . Rosendahl et al. elegantly depicted the range of genetic

and environmental interactions in different CFTR-associated diseases . In CF and in hereditary forms of

pancreatitis due to mutations in genes other than CFTR (such as PRSS1), genetics are dominant, and

environmental factors have little influence on disease onset or severity. Conversely, for CFTR mutations that do not

cause typical CF, the interplay with environmental risk factors becomes increasingly important.

To date, more than 2000 mutations in the CFTR gene have been described. These cover a wide spectrum, from

apparently functionally silent mutations on one end, to the severe, CF-causing mutations on the opposite end of the

scale. Information on the pathophysiological and clinical consequences of these variants has increased markedly

over the last decade . The diagnosis of CF requires two CFTR mutations on different alleles which severely

impair CFTR channel function. Diagnosis of subjects who carry CFTR gene variants associated with residual

protein function is often considerably less straightforward. The terms CF screen-positive, inconclusive diagnosis

(CFSPID, European term) and CFTR-related metabolic syndrome (CRMS, North American term) describe patients

with elevated immune-reactive trypsinogen who carry no or only one apparently CF-causing allele, which do not

fulfil the diagnostic criteria for CF . So-called CFTR-related disorders (CFTR-RD) are single-organ diseases

with evidence of CFTR dysfunction in the absence of a CF diagnosis . CFTR-RD are commonly associated with

the presence of at least one CFTR allele with undefined clinical consequences.

3.1. Impaired Pancreatic Bicarbonate Transport in CF Patients

Impaired pancreatic HCO  secretion in CF patients was recognized far before the discovery of the disease-

causing gene . Follow-up studies indicated that both pancreatic HCO  and Cl  secretion were strongly reduced

in patients and contribute to the CF-typical fluid secretory defect .

As indicated previously, pancreatic dysfunction in CF is variable and correlates with genotype. In approximately

95% of the CF patients carrying severe CFTR mutations, i.e., resulting in an (truncated) immature protein that is

not inserted into the plasma membrane (classes I, II), or in a channel with severely impaired gating (class III), the

ion and fluid secretory function of the pancreatic duct is strongly impaired. This leads to atrophy of the ductal and,

ultimately, also the acinar structures, culminating in extensive fibrosis and exocrine pancreatic insufficiency. In

contrast, CF patients carrying “mild” class IV or V mutations are almost exclusively pancreatic sufficient .

Generally, pancreatic-sufficient CF patients also have a milder respiratory phenotype, lower mean sweat Cl

concentrations and a higher life expectancy than pancreatic-insufficient CF patients . The latter group of patients

displays overt fibrosis of the exocrine pancreas and a virtually complete loss of HCO  and enzyme secretion. In

the pancreatic-sufficient CF group, enzyme production is apparently adequate, but HCO  secretion may

nevertheless be significantly diminished . Pancreatic-sufficient CF patients are at an increased risk of

[75][76][77][78][79][80] [81]

[73]

[73]

[61]

[1]

[82][83]

[1]

3
−

[84]
3

− −

[85][86]

[87]

−

[88]

3
−

3
−

[89][90]



Bicarbonate Transport in Cystic Fibrosis and Pancreatitis | Encyclopedia.pub

https://encyclopedia.pub/entry/18270 8/26

developing pancreatitis, with a median age of onset of 18 years. Pancreatitis in this cohort is often precipitated by

fatty meals and alcohol ingestion .

3.2. Bicarbonate and Viscid Mucus

It is well established that CFTR-dependent HCO  secretion is essential for solubilization of mucins, i.e., the

polymeric glycoproteins that form the main constituent of mucus, in most CF-relevant epithelia . In the

respiratory and intestinal tracts, loss of CFTR-mediated HCO  secretion causes mucins to remain densely packed

and attached to the epithelial surface. This leads to the formation of an abnormally viscid and strongly adherent

mucus layer . In the airways, reduced HCO  secretion and the concomitant accumulation of viscid mucus

are also thought to affect pH regulation at the luminal surface, thought to be crucial for the defense against

microbial colonization . Furthermore, accumulation of hyper-viscid mucus impedes mucociliary clearance .

Thus far, the importance of HCO  in preventing mucus plugging and in anti-microbial defense in human pancreatic

ducts has not been assessed, mainly because of the current lack of representative in vitro models and bona fide in

vivo assays. However, ultrastructural and histochemical studies on autopsy pancreatic tissue and in newborn CF

pigs and ferrets demonstrated that early acinar plugs consist of zymogen material, not mucus, but that subsequent

mucous metaplasia occurs as the obstruction and exocrine atrophy progress . Therefore, acinus plugging in

CF is primarily due to a defect in ductal fluid secretion, not to accumulation of viscous mucus.

3.3. Bicarbonate Transport in Subjects with Non-CF-Causing CFTR Mutations

CFTR-RD include diseases of the pancreas (i.e., acute recurrent or chronic pancreatitis), the male reproductive

tract (congenital bilateral absence of the vas deferens) and the upper respiratory tract (i.e., chronic sinusitis) 

. It has been suggested that, for proper function, these tissues are particularly dependent on CFTR-mediated

HCO  transport, and that the non-CF-causing CFTR mutations associated with these disease syndromes primarily

affect the capacity of CFTR to mediate HCO  transport . Whether carrying a CFTR mutation on only one

allele can give rise to these phenotypes is still unresolved .

In line with the concept that CFTR permeability can be dynamically regulated (Figure 2), it has been proposed that

a select group of CFTR mutations specifically reduce the permeability of CFTR to HCO . Nine such mutations

were identified (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R and D1270N) in the North

American Pancreatitis Study 2 cohort . Patients were screened for CFTR mutations typically not associated

with severe CF. These mutations were not only associated with pancreatitis but were additionally associated with

rhinosinusitis and male infertility. They were termed bicarbonate-defective CFTR (CFTR ) because they showed

normal Cl  but decreased HCO  permeability in response to WNK1/SPAK activation . Two of these mutations,

R74Q and R75Q, showed a reduced association with WNK1 . However, more recent studies could not confirm

that the R75Q mutation is a risk factor for CP, neither in the presence nor absence of a concurrent SPINK1

mutation .

4. Acquired CFTR Dysfunction in Pancreatitis
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Pancreatitis may not only be linked to CFTR mutations but may also result from environmental factors that reduce

(wild-type) CFTR function.

4.1. Alcohol

Early studies showed that alcohol precipitates pain attacks in pancreatic-sufficient CF patients, as well as in

patients suffering from hereditary pancreatitis and alcoholic CP . Low concentrations of ethanol (0.3–30

mmol/L) acutely increased secretin-stimulated fluid secretion of guinea pig PDCs , while high concentrations

(100 mmol/L) decreased ductal fluid and HCO  secretion by reducing CFTR expression and function .

Increased sweat Cl  levels suggested that CFTR function was impaired in patients with excessive alcohol

consumption . CFTR protein expression was decreased in pancreatic tissues of AP and CP patients obtained

from autopsies and surgical resections . Ethanol or its metabolites (palmitoleic acid and palmitoleic acid ethyl

ester) were also shown to decrease cellular cAMP and ATP levels in ductal cells, possibly by impairing oxidative

phosphorylation . Accordingly, inhibition of the carboxylester lipase, a key enzyme in the non-oxidative

ethanol metabolic pathway, decreased the severity of alcoholic AP .

4.2. Bile Acids

Biliary pancreatitis is the leading cause of AP in both children and adults . A proposed mechanism is the reflux

of bile into the pancreatic duct, caused by gallstones or sludge within the distal common bile duct. Bile acid

exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca  and activation of the Ca -

activated phosphatase calcineurin . Bile acids also exert a dose-dependent effect on PDC functions. A low

concentration of chenodeoxycholate (CDC; 0.1 mmol/L) was shown to stimulate apical Cl /HCO  exchange

activity in guinea pig ducts  and CFPAC-1 cells only after CFTR expression . However, CDC administration

did not activate the CFTR Cl  channel . In contrast, a high CDC concentration (1 mmol/L) inhibited HCO

secretion in isolated guinea pig pancreatic ducts by causing severe mitochondrial damage .

4.3. Smoking

Smoking is associated with multiple systemic disorders and leads to acquired CFTR dysfunction in the airways,

sweat glands and intestine . The effects of smokers’ plasma on bronchial epithelial cells suggested the

involvement of a circulating component of smoke . Acrolein, nicotine, cadmium and manganese have been

implicated in CFTR inhibition . While some studies reported a transient activation of CFTR in airway

epithelia , others showed rapid internalization of CFTR from the plasma membrane . Importantly, the

CFTR potentiator ivacaftor (VX-770) reversed the acute CFTR inhibition caused by cigarette smoke extract

exposure in human bronchial epithelial cells .

Smoking is also an independent risk factor for the development of chronic pancreatitis . Past and current

smokers had lower secretin-stimulated peak HCO  concentrations in pancreatic fluid, indicating impaired CFTR-

mediated pancreatic ductal secretion . Cigarette smoke extract seemed to inhibit CFTR activity and HCO

secretion in guinea pig pancreatic ducts . Smoking elevated sweat Cl  concentrations in CP patients and
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decreased CFTR protein expression at the cell surface . Incubation with cigarette smoke extract decreased

CFTR expression in CAPAN1 cells and HCO  secretion in guinea pig pancreatic ducts . Whether this

decrease in HCO  secretion can be reversed by ivacaftor is not known but worthy of investigation.

4.4. Susceptibility to Pancreatitis Inducers

Since not all patients exposed to established environmental risk factors develop pancreatitis (e.g., the majority of

heavy alcohol users do not develop pancreatitis), it is probable that additional (genetic) factors play a role. CFTR

may be one of those genetic modifiers. Children diagnosed with pancreatitis who were exposed to smoke and had

CFTR mutations were admitted to the hospital more often than children without CFTR mutations . In patients

with wild-type CFTR, a reserve CFTR activity may compensate for the deleterious effects of alcohol, but in patients

carrying CFTR mutations, alcohol consumption may compromise CFTR function sufficiently to trigger symptomatic

disease. Non-CF-causing CFTR mutations are also included in experimental pancreatitis models and underline the

essential role of CFTR function in PDC (patho-)physiology. In transgenic mice with impaired Cl  transport but

significant residual CFTR function (CFTR ), the severity of cerulean-induced pancreatitis was increased,

mostly via impairment of PDC function and a shift towards a pro-inflammatory phenotype .

5. CFTR Modulators

Whereas symptomatic therapy of CF is only able to ameliorate the pathological consequences of CF, CF modulator

therapy directly targets the roots of CF, namely, CFTR dysfunction . Modulators are pharmacological

compounds that can be classified on the basis of their different modes of action. So-called potentiators, e.g.,

ivacaftor (VX-770), restore CFTR channel gating; correctors, e.g., lumacaftor (VX-809), tezacaftor (VX-661) and

elexacaftor (VX-445), improve CFTR folding and trafficking to the cell surface, and some such as elexacaftor may

also act as co-potentiators ; amplifiers, e.g., PTI-CH, co-translationally enhance CFTR biosynthesis by

stabilizing CFTR mRNA ; and read-through agents for CFTR nonsense mutations, e.g., aminoglycosides 

and analogs (ELX-02) , or the recently developed compound SRI-37240, suppress premature termination

codons . The spectrum of mutations for which each modulator is clinically approved was reviewed recently .

5.1. Modulator Effects in the Pancreas

Thus far, only a few studies have addressed the effectiveness of CFTR modulators in animal models of

pancreatitis. In a murine AP model induced by cerulean, pretreatment with tezacaftor and ivacaftor reduced the

extent of tissue damage but did not affect other parameters, while in vitro administration increased fluid secretion in

pancreatic ducts of AP animals . Furthermore, in a murine autoimmune pancreatitis model, the CFTR corrector

C18 rescued CFTR expression and localization in the pancreas . Although these model studies provide

valuable insight into the course of CFTR function and expression during pancreatitis, species differences should be

considered, not only in epithelial physiology but also in drug sensitivity. For example, ivacaftor and multiple other

potentiators have been shown to act on human but not murine F508del-CFTR .
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Recent studies of ivacaftor with or without lumacaftor contradicted the assertion that exocrine pancreatic

insufficiency is irreversible in CF children . However, while pancreatic function improved, as evidenced

by the increased fecal elastase-1 concentration and decreased immunoreactive trypsinogen levels, some studies

reported an increase in pancreatitis episodes, resembling the phenotype of pancreatic-sufficient CF patients 

. However, in pancreatic-sufficient CF adults, CFTR modulator therapy reduced the risk and frequency of RAP

. One study included 1800 CF patients who received CFTR modulators and showed a 67% and 62%

reduction in AP hospitalizations in pancreatic-sufficient and pancreatic-insufficient CF patients, respectively .

These results suggest that early treatment with CFTR modulators might prevent pancreatic damage, and that

CFTR modulators can ameliorate pancreatic complications of CFTR dysfunction. Interestingly, a recent case report

documented a patient with RAP and an R117H/7T/F508del CFTR genotype without respiratory symptoms but with

elevated sweat Cl , who was effectively treated with ivacaftor . This suggests a role for CFTR genotype testing

in pancreatitis patients to identify those who could benefit from CFTR modulator therapy.

5.2. Modulator Effects on HCO  Transport

Multiple in vitro and a few in vivo studies have reported various effects of CFTR modulators on HCO  transport.

For example, telemetric measurements of luminal pH in the duodenum of CF patients carrying the G551D gating

mutation showed a profound increase in duodenal pH upon ivacaftor treatment, but in this study, the origin of

HCO  (intestinal, biliary or pancreatic duct) was unclear . In another in vivo study, ivacaftor/lumacaftor

treatment of CF patients increased renal pendrin (SLC26A4)-mediated HCO  excretion through correction of

F508del-CFTR activity in the β-intercalated cells of the collecting duct . Interestingly, surface liquid alkalization in

primary human airway epithelial cell cultures triggered by a triple combination of ivacaftor, elexacaftor and

tezacaftor (marketed as Trikafta) was likewise pendrin mediated, but in this cell type, pendrin expression was

dependent on pretreatment with the pro-inflammatory cytokines TNFα and IL-17 . In Fischer rat thyroid cells, a

common model to study CFTR function, the CFTR corrector lumacaftor was shown to increase the HCO

permeability of F508del-CFTR, and surprisingly to a greater extent than its Cl  permeability . Similarly, ivacaftor

was reported to repair the specific HCO  conductance defect of the D1152H CFTR  mutation in monolayers of

human nasal epithelial cells .

5.3. Modulator Studies in Pancreatic Ductal Organoids

Organoids generated from stem cells in intestinal biopsies and cultured in an extracellular matrix (3D) or as

monolayers (2D) on filters or on microfluidic chips have been used as novel tools to study epithelial

(patho-)physiology and to predict clinical effects of CFTR modulators in individual patients (personalized medicine)

. Recently, culturing methods have been adapted to allow a similar long-term expansion of mouse and

human pancreatic ductal organoids (PDOs) . Pancreatic organoids can be generated from adult stem

cells in pancreatic juice collected during endoscopic ultrasound , from microdissected animal- or patient-derived

pancreatic ducts  or, possibly, even from microbiopsies collected during ERCP . PDOs can be

cryopreserved, clonally expanded and genetically manipulated and retain the characteristics of the tissue of origin,

including gene expression and function of ion channels and transporters . They can be grown 2D as
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polarized monolayers on filters or chips, offering highly suitable models to study Cl  and HCO  transport pathways

and their regulation  (Figure 3). However, it will be a challenge to reproduce the unique ability of PDCs to

accumulate HCO  up to a 140 mmol/L concentration in luminal baths.

Figure 3. (A) Pancreatic ducts were isolated from a porcine pancreas by enzyme treatment and suspended in an

extracellular matrix. From these ductal structures, spherical organoids are formed within a few days. Cultures are

renewed and expanded by mechanical disruption and reseeding of the resulting cell clusters. These can also be

used to initiate epithelial monolayers (2D cultures). (B) When cultured on a permeable substrate, monolayers can

be used to assess epithelial anion transport in an Ussing chamber, analogous to ICM. (C) Current (Isc) response of

a pancreatic organoid-derived monolayer upon stimulation by secretin and the cAMP agonist forskolin, and the

effect of the CFTR blocker PPQ-102.

Human PDOs may also facilitate drug development and drug screening for pancreatic disorders such as CF or

genetic and acquired forms of AP or CP. One restriction is the poor availability of human biopsies or tissue explants

from the pancreatic duct of CF, CFSPID or CFTR  patients. In this case, creating a human model to study the

effect of CFTR mutations and modulators on PDC properties and function would require gene editing of CFTR in

non-CF PDOs. Additionally, it would be of great interest to study the ability of CFTR modulators to restore CFTR

function in PDCs exposed to alcohol, tobacco smoke or bile salts. In particular, the therapeutic potential of VX-770

in a human PDO model deserves further investigation, considering the strong potentiating effect of this drug on

wild-type CFTR channels .
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6. Concluding Remarks

Whereas complete loss of CFTR function leads to the CF-typical fibrosis of the exocrine pancreas and pancreatic

insufficiency, it has become clear in recent years that milder forms of CFTR dysfunction, whether congenital or

acquired, are involved in the pathophysiology of pancreatitis. Congruently, recent studies suggest that CFTR

modulators originally developed for CF therapy may also be of potential benefit in this context. However, not all

patients suffering from pancreatitis carry CFTR mutations, and not all CFTR mutations may be amenable to

correction. Therefore, it will be important to identify those CFTR variants that are potentially responsive to drug

therapy. PDOs provide a promising model to achieve this objective, as they may be used to select modulators on a

personalized basis. Finally, clinical testing of CFTR modulators is indicated to further clarify the role of CFTR

dysfunction in the development of AP and CP, and to validate the therapeutic potential of CFTR modulators.
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