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Congenital deficiency in blood coagulation factor (F) VIII (FVIII) results in excessive bleeding. The disease (hemophilia A)

is treated with infusions of therapeutic FVIII concentrates, either plasma-derived (pdFVIII) or produced with recombinant

DNA technology (rFVIII). Due to the relatively short FVIII plasma half-life (~12 h), such treatment requires frequent FVIII

infusions (3–4 per week in prophylaxis) that calls for developing more efficient longer-acting FVIII products, in particular

with an extended plasma lifetime, commonly termed half-life (EHL). Relevant protein modifications are performed via

genetic and/or chemical modification of rFVIII, and efficient designs require understanding the molecular mechanisms of

FVIII plasma clearance.
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1. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1)

LRP1 was the first found FVIII clearance receptor, described independently by research groups of Saenko and Lenting in

1999 . LRP1 is the major clearance receptor for both FVIII and VWF, based on many in vitro, animal, and genetic

studies . In circulation, LRP1 is expressed on hepatic cells where it internalizes ~15 ligands, such as alpha-2

macroglobulin, proteases, coagulation factors, and lipoproteins, as well as a large variety of ligands in other tissues .

LRP1, similar to other related receptors (see below), interacts with its ligands via a flexible string of adjacent complement-

type repeat domains (CRs), and lysine residues on ligands are the major determinants for the interactions .

On FVIII, such lysine residues are located on the Light Chain (LCh) throughout its A3, C1, and C2 domains . The

FVIII-LRP1 interaction (K  ~20 nM) occurs via formation of multiple alternative binding combinations in a dynamic mode

where a real-time interactive site involves a string with three or more CR domains of the receptor and multiple lysines of

FVIII, as found by us recently . 

Upon FVIII activation, another LRP1-binding site is exposed on the A2 domain. The functional relevance of that may

reflect a participation of LRP1 in plasma clearance of inactivated FVIIIa remnants (A2 domain and A1/A3′-C1-C2

heterodimer). Indeed, each of these fragments is cleared from mouse plasma with the involvement of LRP1 .

On VWF, the LRP1-binding site is located within its A1 domain ; thus, all VWF monomers carry such sites. In contrast

to VWF sites for binding FVIII, its LRP1-binding sites are not exposed under static fluid conditions in vitro due to folded

state of molecule and become exposed only when it unfolds under fluid shear force in blood vessels .

2. Low-Density Lipoprotein Receptor (LDLR)

LDLR was identified as the second FVIII plasma clearance receptor in 2005 . LDLR belongs to a large family of

endocytic receptors named after LDLR itself and involving seven members in mammals, including LRP1 . The family

members are expressed in many tissues where they interact with numerous ligands and regulate many processes,

including those with medical importance .

Expressed in the liver, LDLR catabolizes a smaller number of ligands, mainly low-density lipoprotein (LDL), relevant to

cholesterol metabolism . The role of LDLR in FVIII clearance was supported in a mouse model, where LDLR deficiency

resulted in ~1.5-fold prolongation of FVIII half-life, similarly to LRP1. In turn, combined deficiency in both LRP1 and LDLR

resulted in ~5-fold prolongation of FVIII plasma half-life with an increase in its plasma level. The authors concluded that

LRP1 and LDLR cooperate in FVIII plasma clearance , which was supported in further genetic studies .

Compared to LRP1, the affinity of LDLR for FVIII is lower (K  30–60 nM), which may explain its apparently smaller

contribution to FVIII plasma clearance. As it was found previously, the organization of FVIII binding sites for both receptors

[1][2]

[3]

[4][5]

[6]

[2][7][8]

D

[8]

[9][10]

[11]

[12]

[13]

[14]

[4][5][15][16]

[17]

[13] [18][19]

D



is similar as they are located on the FVIII LCh with the same significance of the C1 domain for LDLR binding  and due

to presence of the binding site also for LDLR in the A2 domain in FVIIIa . Reanalysis of these data , considering

the FVIII-LRP1 interaction mode , indicates that the mechanism of FVIII-LDLR interaction is also based on formation of

alternative binding combinations.

In addition to LDLR and LRP1, other members of the LDLR family exposed to circulation are very low-density lipoprotein

receptor (vLDLR) and megalin, expressed on endothelial and kidney cells, respectively. Both can interact with FVIII and

FVIIIa in vitro similarly to LRP1 and LDLR, however, with unknown functional relevance . In particular, the role of

vLDLR in FVIII clearance was not supported in the mouse model . 

3. Cell-Surface Heparan-Sulfate Proteoglycans (HSPGs)

HSPGs have covalent attachment of several negatively charged sulfated polysaccharide chains and are localized on cell

membranes. There is a large variety of HSPGs which interact with numerous protein ligands via their basic residues 

. HSPGs serve as receptors or coreceptors, in particular of LRP1, facilitating its ligand recognition. In plasma, such

ligands involve lipoprotein lipase , apo E-containing lipoproteins , thrombospondin , thrombin-protease nexin 1

complex , tissue factor pathway inhibitor , thrombin, antithrombin III, and FX , and FVIII .

In these processes, HSPGs preconcentrate the ligands to facilitate their further interactions with other receptors. In

particular, FVIII has extremely low plasma concentration (≤1 nM) , insufficient for its effective interaction with LRP1 (K

~20 nM). The involvement of HSPGs, abundantly expressed on cells , altogether with the cell membrane interaction of

FVIII , is believed to increase its local concentration and facilitate LRP1 binding to LRP1. Similarly, HSPGs may

facilitate FVIII interactions with other clearance receptors.

4. Asialoglycoprotein Receptor (ASGPR)

Other clearance receptors of FVIII and VWF (lectins) recognize their carbohydrates. Activated form of FVIII contains four

N-linked glycans, whereas the dissociated B-domain contains ~14 N- and ~7 O-linked glycans . VWF contains 23

glycans (N- or O-linked) per monomer , with an estimated number of >1000 on the molecule. In both proteins, the N-

glycans contain bi-, tri-, and tetra-antennary structures with high mannose portions, ABO(H)-determinants; and the O-

glycans contain mainly T-antigen. These glycans (as well as in other proteins) are terminally capped by sialic acid sugars

with ≥80% occupancy . Notably, the N-glycosylation of rFVIII differs from pdFVIII mainly in sialic acids,

ABO(H) blood group, etc. The greatest difference was found in rFVIII expressed in human embryonic kidney (HEK) cells,

whereas the use of baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cells also resulted in such a difference

. The half-life of VWF is dependent on its ABO(H) group glycans, where the O-type glycan-bearing VWF variants have

significantly shorter plasma half-life, associated with FVIII level as noted above .

ASGPR (Ashwell receptor), a member of the C-type family of lectins recognizing terminal asialic sugars , was found to

be a clearance receptor for both FVIII and VWF. ASGPR binds with high affinity to FVIII asialylated N-glycans (K  ~2 nM),

where the major binding determinant is the abundantly glycosylated B-domain. However, removal of the B-domain does

not significantly affect FVIII plasma half-time in various species including humans. Therefore, the authors concluded that

ASGPR likely plays a role only in quality control of FVIII biosynthesis by eliminating incompletely glycosylated protein .

Other causes of proteins desialylation are proteins “aging”  and infection with pathogens ; both processes likely

engage ASGPR in the clearance of such proteins.

Regarding VWF, a deficiency in ASGPR resulted in ~1.5-fold prolongation of its plasma half-life in a mouse model; in

parallel, FVIII level was increased . Other plasma ligands of ASGPR include chylomicron remnants, fibronectin,

lactoferrin, immunoglobulin A, members of the prolactin/growth hormone family, lipoprotein(a), urokinase-type

plasminogen activator , and platelets .

5. Sialic Acid Binding Immuno Globulin-like Lectin Member 5 (SIGLEC5)

In humans, there are 14 members of SIGLECs. These receptors are expressed on cells of hematopoietic origin, whereas

each member is found on specific cell type(s). SIGLEC5 recognizes the two most common sialic acid sugars, N-

acetylneuraminic acid and N-glycolylneuraminic acid, and is expressed on macrophages. SIGLEC5 binds to both FVIII

and VWF with high affinity (K s ~8 and ~14 nM, respectively). In cell culture, SIGLEC5 mediated internalization of both

proteins; and in mice, overexpression of SIGLEC5 resulted in significant decrease in FVIII and VWF levels .
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Within the FVIII/VWF complex, FVIII does not interact with SIGLEC5. In contrast to VWF, desialylation of FVIII does not

affect its binding to SIGLEC5, indicating that FVIII interacts with receptors via protein moiety. Indeed, each of full-length

(FL) FVIII and a B-domain deleted (BDD) FVIII, lacking ~85% of FL-FVIII glycans, had similar binding to SIGLEC5. The

authors concluded that SIGLEC5 may regulate plasma level of the FVIII/VWF complex .

6. C-Type Lectin Domain Family 4 Member M (CLEC4M)

CLEC4M is a mannose-specific endocytic receptor expressed on endothelium of liver, lymph nodes, and placenta.

CLEC4M interacts with both FVIII and VWF via their N-glycans and internalizes both proteins in cell culture; in the case of

FVIII, the interaction occurred in either a VWF-dependent or independent manner. Overexpression of CLEC4M in mice

resulted in decreased plasma levels of both FVIII and VWF. The authors suggested that CLEC4M is a clearance receptor

of both FVIII and VWF .

This role of CLEC4M was further supported by finding association of polymorphism in the receptor gene with FVIII and

VWF plasma levels (see below). Other known ligands of CLEC4M include pathogens, such as Mycobacterium
tuberculosis, HIV-1, influenza A, SARS-CoV, Ebola, hepatitis C, and West Nile viruses , whereas no endogenous

glycoprotein ligands besides FVIII and VWF were reported.

7. Stabilin-2 (STAB2)

STAB2 is a class H endocytic receptor, recognizing glycosaminoglycans (mucopolysaccharides), and is expressed on

endothelial cells in liver, spleen, and lymph nodes. Studies demonstrated association between STAB2 genetic

polymorphism and plasma levels of both FVIII and VWF . STAB2 binds and internalizes VWF, and binds FVIII

in a VWF-independent mode. In STAB2-deficient mice, the half-lives of VWF and FVIII were prolonged ~1.5-fold upon

injection of VWF, whereas FVIII itself interacted weakly with STAB2. The authors concluded that STAB2 is a clearance

receptor of the VWF and FVIII/VWF complex. Other ligands of STAB2 include hyaluronic acid, heparins, chondroitin

sulfates, collagen, and advanced glycation end products .

8. Scavenger Receptor Type A Member 5 (SCARA5)

SCARA5 (SR-A5) is expressed on endothelial cells in the spleen and kidneys, where it recognizes lipopolysaccharides,

ferritin, polyanions, and bacteria , indicating that recognized determinants are carbohydrates. SCARA5 binds VWF with

very high affinity (K  ~0.5 nM), whereas it does not bind FVIII. SCARA5-expressing human cells bound and internalized

VWF, but not FVIII. Under the condition of SCARA5 deficiency in mice, the half-life of injected VWF was prolonged by

≤1.3 times. The authors concluded that SCARA5 is an endocytic receptor for VWF . This was supported by the finding

of association of SCARA5 gene polymorphism with VWF levels .

9. Scavenger Receptor Type A Member 1 (SCARA1)

SCARA1 (SR-A1) is localized on macrophages where it recognizes polysaccharides, lipopolysaccharides, spectrin (a

marker of apoptotic cells), bacteria, extracellular matrix, proteoglycans, etc. , most likely via carbohydrates. SCARA1

binds to VWF with high affinity (K  ~14 nM) via multiple sites suggested to be on the D’D3, A1, and D4 domains via both

protein and glycan determinants. VWF bound to SCARA1-expressing cells and had slower plasma clearance in SCARA1-

defcient mice. Two VWF mutants, known for increased plasma clearance in humans, had significantly higher binding to

SCARA5 in a purified system and on macrophages, and slower plasma clearance in SCARA1-defcient mice. The authors

suggested that SCARA1 contributes to increased plasma clearance of certain VWF variants .

10. Macrophage Galactose-Type Lectin (MGL)

MGL is a C-type lectin, expressed on macrophages and recognizing terminal N-acetyl galactosamine or galactose sugars.

FVIII binds to MGL via asialic O-linked glycans on the B-domain. In MGL-deficient mice, FVIII level was ~1.3-fold

elevated, consistent with a role of MGL in clearance of both FVIII and VWF. In VWF-deficient mice, FVIII half-life was

reduced ~8-fold, but prolonged 3–4-fold upon (i) inhibition of MGL with antibodies and (ii) depletion of macrophages by a

specific reagent (clodronate). The authors concluded that MGL plays an important role in macrophage-mediated plasma

clearance of both FVIII and the FVIII/VWF complex .

In an earlier study, dose-dependent binding of VWF to MGL was observed, as well as an enhanced clearance of hypo

sialylated VWF in VWF/ASGPR-deficient mice, inhibited by coadministration of an MGL antibody. In MGL-deficient mice,
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VWF levels were significantly elevated . Altogether, these studies demonstrated a role of MGL in plasma clearance of

FVIII via both VWF-dependent and independent pathways.

11. Other Factors Interacting with FVIII and VWF, or Affecting Their Plasma
Levels

In addition to receptors mentioned above, other factors were also indicated to participate in FVIII plasma clearance based

on less-in-depth studies. Two lectins, Galectin-1 and -3 (Gal-1, Gal-3), expressed on endothelial cells and recognizing β-

galactoside residues, bound FVIII with high affinity (K s 0.1–0.5 nM) via N- and O-linked glycans, mostly located on the B-

domain. Notably, a BHK-cell-derived rFVIII had enhanced affinity to both receptors compared to the CHO-cell-derived

rFVIII , consistent with their difference in N-glycans mentioned above . VWF also bound both galectins, mostly via N-

glycans but with lower affinity (K s 20–80 nM) . The authors concluded that Gal-1, Gal-3 may influence FVIII

procoagulant activity and VWF-mediated thrombus formation .

In several studies involving more than 50,000 subjects total, genetic polymorphism (a single nucleotide or amino acid

change) in many genes was associated with FVIII and VWF plasma levels. The FVIII-linked genes were STAB2, VWF, F8,

ABO, SCARA5, STXBP5, LBH, FAM46A, VAV2, ACCN1, KATNB1, LDLR, and LRP1; and the VWF-linked genes were

STXBP5, SCARA5, ABO, STAB2, VWF, STX2, TC2N, CLEC4M, VPS8, EBP41L4A, KRT18P24, and SAFB2 

. A later study of Sabater-Lleal et al. identified additional 7 FVIII- and 11 VWF-linked genes/gene groups, supported by

functional validation of results using cell culture where silencing of respective genes resulted in change of FVIII and VWF

levels .

Recently, Swystun and Lillicrap described particular variants of LDLR, ASGPR, CLEC4M, TC2N, and ABO(H) affecting

the plasma half-lives of FVIII and VWF in support of development of personalized treatment plans for patients with

hemophilia A . It should also be noted that elevated FVIII levels are associated with increased risk of thrombosis .

Overall, the genetic studies supported the role of FVIII and VWF clearance receptors reviewed above, whereas the roles

of other identified genes remain to be explored.

12. Summary—FVIII Determinants to Be Modified to Extend the Plasma
Half-Life

Knowledge derived from understanding FVIII clearance mechanisms indicates that major FVIII determinants to clearance

receptors are located on the LCh. This portion of FVIII carries extended binding sites for LRP1, LDLR, and VWF, for which

interactions with FVIII significantly affect its plasma half-life. Therefore, blocking these sites on FVIII may potentially

decrease or abolish these interactions and extend FVIII plasma half-life.
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