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Downsampling, which aims to improve computational efficiency by reducing the spatial resolution of feature maps, is a critical

operation in neural networks. Upsampling also plays an important role in neural networks. It is often used for image super-

resolution, segmentation, and generation tasks via the reconstruction of high-resolution feature maps during the decoding

stage in the neural network.

model lightweighting  information-retaining downsampling  feature slicing

depthwise separable convolution

1. Introduction

In recent years, deep learning  has achieved remarkable success in various computer vision (CV) tasks, such as image

classification , object detection , and semantic segmentation . However, deep learning (DL) models often suffer from

heavy computational burdens due to large numbers of parameters and high-dimensional input data, limiting their practical

applications . In particular, the proliferation of smart devices and IoT (Internet of Things) sensors has given rise to a pressing

need for edge computing  as edge computing enables computation near data sources or things. To deploy DL models on

resource-limited edge devices, reducing model complexity has become a priority . Various techniques have been

proposed for reducing the complexity of DL models, among which downsampling plays a crucial role . However, most

existing downsampling methods tend to lose some detailed information . Thus, it remains a challenging problem to design

a lightweight and efficient downsampling component which can retain more semantic and detailed information with lower

algorithmic complexity.

In many computer vision tasks, neural network downsampling is a crucial technique that is used to reduce the spatial

resolution of the feature map . It can effectively reduce the computational and memory requirements of the network and

expand the receptive field while retaining important information for subsequent processing . It reduces the spatial resolution

by proportionally scaling down the width and height of feature maps, which can be achieved by selecting a subset of features

or by aggregating the features in local regions. Downsampling can help to regularize the network and prevent overfitting by

reducing the number of parameters and introducing some degree of spatial invariance . It can improve the efficiency of the

neural network in processing large-scale complex data, such as remote sensing images and videos, and enable the DL

models to operate on resource-limited devices . Pooling or subsampling of feature maps, such as Max Pooling or Strided

Convolution, is a common downsampling operation in the neural network . However, most of the methods condense

regional features to a single output, which suffers from several challenges, such as information loss and spatial bias . For

instance, Max Pooling only retains the most distinguishable features , and subsampling picks a portion of features

randomly or according to rules , while the slicing adopted in this work utilizes the full information in the input feature

map, as shown in Figure 1. Therefore, the research on neural network downsampling is still an active area where there is

space for optimization, and more efficient methods need be developed for better retaining feature information.
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Figure 1. Feature information retained by different downsampling methods.

Upsampling also plays an important role in neural networks. It is often used for image super-resolution , segmentation ,

and generation  tasks via the reconstruction of high-resolution feature maps during the decoding stage in the neural

network . The main upsampling methods include interpolation-based upsampling such as the Nearest Neighbor, Bilinear,

and Bicubic Interpolation methods  and the Transposed Convolution  and Sub-Pixel Convolutional  methods. The

simplest and fastest algorithm is Nearest Neighbor sampling in which each pixel is copied in four copies to a 2 × 2

neighborhood; however, jagged edges are often introduced . The Bilinear and Bicubic Interpolation methods calculate new

pixel values via the weighted averaging of the nearest pixels in the original image, providing smoother results than Nearest

Neighbor Upsampling yet still introducing some blurring . Transposed Convolution, also known as deconvolution or

fractionally strided convolution, is the reverse operation of convolution. It produces high-quality results with an expensive

computational burden . Sub-Pixel Convolutional Upsampling rearranges the feature maps via a periodic shuffling operator

to increase the spatial resolution . It is fast and computationally efficient; however, it may lead to some artifacts. Many

existing downsampling techniques are often combined with the above upsampling methods as it is difficult to implement an

inverse transform for generating low-dimensional spatial features .

2. Downsampling in Neural Networks

To reduce model complexity, researchers have developed various downsampling methods that are tailored to specific tasks

and architectures, including pooling-based , subsampling-based , patch-based , and learnable pooling 

methods. In the early stages of neural network development, Maximum Pooling or Average Pooling were commonly adopted

to achieve downsampling by taking the maximum or average value within a local window. These methods are fast and

memory-efficient, yet t room for improvement remains in terms of information retention . Some methods that combine Max

and Average Pooling, such as Mixed Pooling , exhibit better performance compared to a single method. Unlike Maximum

Pooling, Average Pooling, and their variants, SoftPool exponentially weights the activations using Softmax (normalized

exponential function) kernels to retain feature information . Wu et al.  proposed pyramid pooling for the transformer

architecture; pyramid pooling which applies different scales of average pooling layers to generate pyramid feature maps, thus

capturing powerful contextual features. There are also pooling methods that are designed to enhance the generalization of a

model. For example, Fractional Pooling , S3Pool , and Stochastic Pooling  can prevent overfitting by taking random

samples in the pooling region. However, most pooling-based methods are hand-crafted nonlinear mappings which usually

employ fixed, unlearnable prior knowledge .

Nonlinear mapping can also be generated by overlaying complex convolutional layers and activation functions in a deep

neural network (DNN) . When the network is shallow, pooling has some advantages. When the network goes deeper, multi-

layer stacked convolution can learn better nonlinearity than pooling. It can also achieve better results . Therefore, Strided

Convolution, which reduces spatial dimensionality by adjusting the stride to skip some pixels in the feature map, is generally

used for downsampling in convolutional neural networks at present . Pooling and Stride Convolution have the advantage of

extracting stronger semantic features, although at the cost of losing some detailed information . In contrast, the features

extracted via passthrough downsampling  have less semantic information but retain more detailed information. In

transformer-based networks, patch-based downsampling is generally adopted . Patch merging is a method of reducing

the number of tokens in transformer architectures which concatenates the features of each group of 2 × 2 neighboring

patches and extracts the features with a linear layer . Patch-based methods perform poorly at capturing fine spatial

structures and details, like edges and texture . Li et al.  stacked the results of the Discrete Wavelet Transform in the

channel dimension instead of directly stacking patches to prevent spatial domain distortion. Moreover, Lu et al.  proposed a

Robust Feature Downsampling Module by combining various techniques such as slice, Max Pooling, and group convolution,

achieving satisfactory results in remote sensing visual tasks.

In recent years, learnable weights were gradually introduced into some advanced downsampling methods. Saeedan et al. 

proposed Detail Preserving Pooling methods that use learnable weights to emphasize spatial changes and preserve edges

and texture details. Gao et al.  proposed Local Importance-Based Pooling to retain important features based on weights

learned by a local attention mechanism. Ma and Gu et al.  proposed spatial attention pooling to learn feature weights and

refine local features. Hesse et al.  introduced a Content-Adaptive Downsampling method that downsamples only the non-

critical regions learned by a network, effectively preserving detailed information in the regions of interest.

Recently, other studies proposed bi-directional pooling operations that can support both downsampling and upsampling

operations, such as Liftpool  and AdaPool . Liftpool decomposes the input into multiple sub-bands carrying different

frequency information during downsampling and enables inverse recovery during upsampling . AdaPool uses two groups of

pooling kernels to better retain the details of the original feature, and its learned weights can be used as prior knowledge for

upsampling . These improved downsampling methods have demonstrated good performance gains, yet most of them still

inevitably lose some feature information in the downsampling process.
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3. Depthwise Separable Convolution

Depthwise separable convolution (DSConv)  has gained significant attention in recent years due to its effectiveness at

reducing the computational cost of convolutional layers in neural networks . An early work was proposed by Chollet in

the Xception model . It replaced traditional Inception modules with DSConv and showed advanced performance on the

ImageNet dataset with fewer parameters. Another remarkable work on DSConv is MobileNet, which builds faster and more

efficient lightweight DNNs for mobile and embedded vision applications using DSConv . In addition, several studies

integrated and improved DSConv. Drossos et al.  combined DSConv and dilated convolutions for sound event detection.

ShuffleNet uses channel shuffle to reduce computational costs in DSConv while maintaining or improving accuracy .

Recently, a depthwise separable convolution attention module was proposed to focus on important information and capture

the relationships of channels and spatial positions . Compared to standard convolutional layers, DSConv can significantly

reduce the computational cost and memory requirements of a network while maintaining competitive model performance 

. This makes it a popular choice in modern neural network architectures, especially for mobile and embedded devices with

limited computational resources . Overall, the above studies demonstrate the effectiveness of DSConv in terms of saving

computational resources, as well as the potential ability to further improve model performance by combining DSConv with

other techniques.
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