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Biochar is a specific carbon obtained by a pyrolysis process from different feedstocks, as an alternative material for heavy

metal adsorption from groundwater. Many studies have been conducted regarding the application of innovative materials

to water decontamination to develop a more sustainable approach to remediation processes. 
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1. Introduction

Activated carbon (AC) is one of the most used adsorbents for the removal of contaminants in water due to its properties.

AC is primarily prepared from coal, coconut shells, lignite, and wood, and activated by physical and chemical methods.

Due to its high specific surface area, chemical stability, durability, high capacity of adsorption, and not selective adsorption

capacity, AC has been widely used to remove heavy metals from groundwater . However, the regeneration costs of

AC may limit its extensive use ; therefore, it is important to develop low-cost adsorbents with a high adsorption

capacity for the removal of pollutants from aqueous systems .

Adsorption onto biochar (BC) is generally considered one of the most cost-efficient and effective treatment methods for

removing heavy metals in water and soils , and it could represent an alternative low-cost and sustainable adsorbent for

contaminant removal from water . Biochar is a carbon-rich solid material produced by the thermal decomposition of

organic material with a limited supply of oxygen (pyrolysis). It can be produced sustainably under controlled conditions

and with clean technologies .

BC is produced from various types of wastes such as woody biomass, animal manure, waste paper, and sludges ;

it is sometimes also considered a solid by-product, which causes problems in its final disposal. The specific properties of

biochar, including its large specific surface area, porous structure, enriched surface functional groups, and mineral

constituents, allow it to have a high adsorption capacity . Moreover, BC is easier to prepare and less expensive than

active AC or other adsorbing materials . Biochar has a similar porous structure to activated carbon, which is the most

widely used and efficient sorbent in the world for removing various pollutants from water. Compared to activated carbon,

biochar appears to be a new potential low-cost and effective adsorbent because the cost of biochar is six times lower than

activated carbon, due to its lower energy requirements and the fact that it can be used without chemicals or physical

activations .

2. Biochar

Biochar, which has been known since olden times for its beneficial effects on soil, is produced using the thermal treatment

of organic residues from different sources conducted under controlled conditions, i.e., without an oxidising agent 

. Moreover, biochar is a type of specific charcoal that can be obtained by the pyrolysis processing of biomasses with

a limited supply of oxygen  and with clean technology . In fact, the International Biochar Initiative (IBI) defines

biochar as a solid material produced by the thermochemical conversion of biomass in an oxygen-limited condition .

The specific properties of biochar, including its large specific surface area (S ), porous structure, enriched surface

functional groups, and mineral constituents, enable it to have a high adsorption capacity . The density and size of its

pores, which are generated by the volatilisation of organic substances, depends on the feedstock and on the temperature

during pyrolysis . 

The production of biochar is a process that allows for the valorisation of materials that are substantially considered waste.

The Food and Agriculture Organization of the United Nations (FAO) reports that one billion tons of food are wasted every
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year, of which 60% is solid food waste, such as fruit and vegetable scraps, including peels, seeds, and pips, posing a

serious disposal problem . To promote a zero-waste strategy, it is important to highlight the importance of biochar in the

circular economy . The transformation of waste into value-added products is one of the alternative solutions to minimise

the problem of waste production . In fact, the use of biochar as an environmental application can lead to a reduction in

agricultural waste  and plant biomass used in the pyrolysis process .

Biochar is not only an effective material for environmental remediation but can also be used in other fields . In

environmental management, biochar can be used for several purposes, as shown in Figure 1, including the following: the

improvement of soil quality , greenhouse emission reduction (mainly CO ), climate change mitigation , waste

and heavy metals management , and as adsorbent material for the removal of heavy metals from

contaminated water .

Figure 1. Biochar: origin, preparation, modification, and use.

3. Heavy Metals

Heavy metals are defined as a group of metals and metalloids with a higher density than water  and a toxic or

poisonous effect on humans or the environment at low concentrations . Heavy metals include metals with a density at

least five times greater than that of water (i.e., about 5.0 g/cm ), and some metalloids, such as arsenic .

The presence of heavy metal contamination in groundwater is well known due also to natural phenomena such as the

erosion and weathering of parent rocks . Natural events such as volcanic eruptions, soil erosion, the rock cycle,

atmospheric influences, and tides contribute to the natural cycle of metals, so they reach several environmental

compartments, including water, soil, and air . At the same time, groundwater is often contaminated with heavy metals

from anthropogenic sources like landfill leachate, sewage, excavation activities, and the uncontrolled disposal of industrial

waste .

The toxicity, mobility, and reactivity of heavy metals depend on their oxidative states, which are influenced by pH, Eh, and

temperature . Several previous studies reported that the interaction of heavy metals with microorganisms reduced

the expression of several enzymes . Furthermore, some heavy metals, at high concentrations, become toxic

because they interact with metal-sensitive enzymes, causing the death of some organisms .

4. Applications of Adsorption Process for Heavy Metal Removal

4.1. Adsorption Process

The treatment of groundwater contaminated by heavy metals is considered an international challenge .

To restore groundwater contaminated by heavy metals, several remediation technologies have been developed, such as

chemical precipitations , ion exchange , electrokinetic technology, redox methods , membrane technologies ,

and permeable reactive barriers ; however, the use of these technologies has several contraindications .

Therefore, interest in environmentally friendly and economically acceptable treatment technologies for sustainable

groundwater remediation  is growing.

Adsorption is a widely applied technique for removing heavy metals from groundwater . Today, several new adsorbents,

such as activated carbon , nanotubes , multi-material nanoparticles, and biochar are being studied as potential
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sorbents . Adsorption is a chemical–physical phenomenon consisting of the accumulation of one or more fluid

substances (liquid or gaseous) on the surface of a solid condensate. In the phenomenon of adsorption, a chemical–

physical interaction occurs between chemical species (molecules, atoms, or ions) on the interface between two distinct

phases.

The species subjected to adsorption is called the adsorbate, and the solid phase is called the adsorbent . From a

thermodynamic point of view, it can be stated that adsorption is a spontaneous process (ΔG < 0) and is characterised by a

decrease in the entropy of the adsorbed substance incorporated into the solid (ΔS < 0). Adsorption is an exothermic

phenomenon (ΔH < 0) and is therefore favoured by low-temperature values; the amount of heat generated by the process

is a function of the type of bonds formed . Depending on the nature of the interactions that occur between the

adsorbate and the adsorbent, and thus on the extent of the energy of the bonds with which the particles are retained on

the surface, adsorption can be defined as physical, also called physisorption, or chemisorption .

Physical adsorption is characterised by weak intermolecular bonds, such as electrostatic or van der Waals, due to the

polarity of the adsorbed molecules and the presence of positive or negative ions on the adsorbent surface . Chemical

adsorption is, on the other hand, characterised by strong intramolecular bonds, a specific phenomenon that occurs at

active sites capable of forming bonds with the molecules of the liquid .

The specific behaviour of both processes and the eventual modification in electron density are presented in 

.

Adsorption is a superficial process . For this reason, adsorbent materials must have a high specific surface area, which

refers not only to the size of the granules of which they are composed but also, and more importantly, to the internal

porosity (p) of those granules . The series of treatments by which adsorbents are prepared results in the formation of

pores of different sizes .

4.2. Column Systems

Studies on adsorption processes at the lab scale can be carried out with two different types of reactors: batch (i.e.,

discontinuous mode) or column (i.e., continuous flow) . Column systems with continuous flow, as shown in Figure 2,

are generally used for this kind of experiment. The flow can be upflow or downflow and typically governed by pump

systems.

Figure 2. Schemes of possible fixed-bed adsorption systems .

Flow conditions within the column are described by two hypotheses: complete mixing in the transverse direction and the

lack of mixing in the longitudinal direction (laminar flow conditions) . In both cases, the hydraulic residence time of

the liquid in the device is chosen to achieve conditions sufficiently close to thermodynamic equilibrium , and steady-

state conditions are also generally assumed.

Therefore, in continuous flow processes the adsorbent solid may be arranged as a fixed bed or as a moving bed in

contact with the liquid, while the liquid flow may be descending or ascending . Figure 3 below presents

different configurations of the experimental apparatuses used for heavy metal removal through fixed-bed columns and

biochar.
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Figure 3. Examples of experimental setups in different studies .
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