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Sleep is vital for one’s general well-being, but is often neglected, which has led to an increase in sleep disorders

worldwide. Indicators of sleep disorders, such as sleep interruptions, extreme daytime drowsiness, or snoring, can

be detected with sleep analysis. However, sleep analysis relies on visuals conducted by experts, and is susceptible

to inter- and intra-observer variabilities. One way to overcome these limitations is to support experts with a

programmed diagnostic tool (PDT) based on artificial intelligence for timely detection of sleep disturbances.

Artificial intelligence technology, such as deep learning (DL), ensures that data are fully utilized with low to no

information loss during training.

sleep disorder,obstructive sleep disorder,overnight polysomnogram,EEG,EMG,ECG,HRV signals,deep

learning

1. Introduction

Sleep is crucial for the maintenance and regulation of various biological functions at a molecular level , which

helps humans to restore physical and mental wellbeing and proper brain function during the day . There are two

primary types of sleep: non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep

comprises four stages, after which, it continues into the REM sleep stage. NREM and REM sleep stages are

connected and cyclically alternated through the sleep process wherein unbalanced cycling or the absence of sleep

stages give rise to sleep disorders . Unfortunately, sleep disorders, which lead to poor sleep quality, are often

neglected . Stranges et al.  highlighted that sleep-related problems is a looming global health issue. In their

study, datasets from the World Health Organization (WHO) and International Network for the Demographic

Evaluation of Populations and Their Health (INDEPTH) were used to investigate the prevalence of sleep problems

in low-income countries. It was reported that 16.6% of the adult population, which amounts to approximately 150

million, have sleep problems and current trends indicate that this figure will increase to 260 million by 2030.

To date, it is mandatory that sleep stage scoring is done manually by human experts . However, human experts

have limited capacity to handle slow changes in background electroencephalography (EEG) and learn the different

rules to score sleep stages for various polysomnogram (PSG) recordings . Furthermore, evaluations by human

experts are prone to inter- and intra-observer variabilities that can negatively affect the quality of sleep stage

scoring . Other important factors affecting sleep stage scoring are patient convenience and diagnosis cost. As

such, a sleep lab is a highly controlled environment that requires dedicated facilities and highly trained personnel.

Hence, sleep labs tend to be in urban centers and patients must travel there to spend one or multiple nights in the

facility. These factors make sleep labs inconvenient for patients and the cost per diagnosis is high. Other diagnostic
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methods, such as portable monitoring devices for sleep stages, exhibit some advantages, such as enhancing

access to patients, low cost, and user-friendliness. However, these advantages are outweighed by several

disadvantages, such as having diagnostic limitations, failure of device, reliability concerns, and underestimating the

apnea/hypopnea index, amongst others . To improve the situation requires a fundamental change in the sleep

stage scoring process. We need machines to replace the labor carried out by human experts. This can only be

done with systems that understand sleep stages in much of the same way as human experts do. Deep learning

(DL) is hailed as a method to mechanize knowledge work, such as sleep stage scoring. However, before we join

and adopt this technology, it is prudent to investigate both capabilities and limitations of current DL methods.

2. Sleep Stages Classification Using DL Models

2.1. Different Stages of Sleep

According to Rechtschaffen and Kales (R and K) , humans can experience six discrete stages during sleep: (1)

wakefulness (W), (2) rapid eye movement (REM) sleep, and (3) four stages of non-REM (NREM) sleep (S1 to S4)

. Based on the sleep electroencephalogram (EEG) characteristics, W occurs when the brain is most active,

which is represented by high frequency of alpha rhythms. In the NREM sleep, these alpha rhythms eventually

diminish when entering the S1 wherein theta rhythm dominates instead. In the S2, sleep spindles and occasional

K-complex waveform will appear. The K-complex waveform usually lasts for approximately 1 to 2 s. The S3 sleep

occurs when low frequency delta rhythms appear intermittently and eventually, they dominate in the S4 sleep.

Finally, REM sleep usually follows after the S4 sleep. In the REM sleep, theta rhythms resurface again, but unlike

in the S1 sleep, theta rhythms are accompanied with EEG flattening . Following the guidelines from American

Academy of Sleep Medicine (AASM), the S3 and S4 sleep stages can be merged into one sleep stage S3,

because of the similarity in their characteristics . Since the delta rhythms are the slowest EEG waves, S3 and

S4 sleep stages are known as Slow Wave Sleep (SWS) or the deep sleep. Thus, most sleep classification studies

are based on five: W, S1, S2, S3, and REM sleep stages, instead of six (Figure 1).

Figure 1. Examples of electroencephalography (EEG) signals in different sleep stages.
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2.2. Sleep Databases

Eight main sleep databases have been used for automated sleep stage classifications. Five of the databases are

free to download from PhysioNet , namely the Sleep-EDF , the expanded Sleep-EDF , the St. Vincent’s

University Hospital/University College Dublin Sleep Apnea Database (UCD) , the Sleep Heart Health Study

(SHHS) , and the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH)  database. The

ISRUC-Sleep datasets  can be downloaded from the official websites. Permission is required to obtain the sleep

datasets from the Montreal Archive of Sleep Studies (MASS) .

The PSG recordings, in most of the sleep databases, are scored according to R and K rules , wherein scoring is

done based on wakefulness, NREM sleep and REM sleep. NREM sleep is then subdivided into four stages (S1 to

S4). Exceptions are ISRUC and MASS which follow the AASM guideline and partition the recordings into five sleep

stages instead of six .

2.3. DL Techniques Used in Automatic Sleep Stage Classification

The development of a program diagnostic tool (PDT) for automatic sleep stage classification using DL techniques

is shown in Figure 2. First, PSG recordings have to be pre-processed to achieve standardization or normalization.

Depending on the requirement and architecture of the proposed DL model, additional steps to convert the PSG

recordings into the right input format is required; for example, converting one-dimensional (1D) signals into a two-

dimensional (2D) format to train 2D-CNN models. Subsequently, the pre-processed signals are split into training,

validation, and testing sets. The training set is used to train the model, the validation set is to fine-tune the model,

and the testing set is used to evaluate the model’s performance. A well-trained model can accurately classify PSG

recordings into the five sleep stages.

Figure 2. Programmed diagnostic tool (PDT) block diagram with DL for automated sleep stage classification.

Figure 3 illustrates the number of times each sleep database had been used by studies for automated sleep stage

classification using DL techniques, from 2010 to 2020. The DL methods and accuracy obtained from the respective

sleep databases are summarized as follows: Sleep-EDF (Table 1), expanded Sleep-EDF (Table 2), MASS (Table

3), MIT-BIH, and SHHS (Table 4), and studies that used the remaining two sleep databases (ISRUC and UCD) and

private datasets are listed in Table 5. With the exception of three studies , which classified sleep into four

stages, all automated sleep stage classification studies, in Table 1, Table 2, Table 3, Table 4 and Table 5, followed

the AASM guidelines  and classified sleep into five stages. In studies with sleep databases following the R and K
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rules , (i.e., Sleep-EDF, expanded Sleep-EDF, UCD, SHHS, and MIT-BIH), the S3 and S4 stages were often

combined manually before pre-processing the PSG signals.

Table 1. Summary of automated sleep stage classification approaches with DL applied to PSG recordings in Sleep-

EDF dataset.

Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

Zhu et al.  2020 EEG 15,188 attention CNN − 93.7

Qureshi et al.
 2019 EEG 41,900 CNN − 92.5

Yildirim et al.
 2019 EEG 15,188 1D-CNN Keras 90.8

Hsu et al.  2013 EEG 2880 Elman RNN − 87.2

Michielli et al.
 2019 EEG 10,280 RNN-LSTM MATLAB 86.7

Wei et al.  2017 EEG − CNN − 84.5

Mousavi et al.
 2019 EEG 42,308 CNN-BiRNN TensorFlow 84.3

Seo et al.  2020 EEG 42,308 CRNN PyTorch 83.9

Zhang et al.
 2020 EEG − CNN − 83.6

Supratak et al.
 2017 EEG 41,950 CNN-BiLSTM TensorFlow 82.0

Phan et al.
 2019 EEG −

Multi-task
CNN

TensorFlow 81.9

Vilamala et al.
 2017 EEG − CNN − 81.3

Phan et al.
 2018 EEG − 1-max CNN − 79.8

Phan et al.
 2018 EEG −

Attentional
RNN

− 79.1

Yildirim et al.
 2019 EOG 15,188 1D-CNN Keras 89.8
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Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

Yildirim et al.
 2019

EEG +
EOG

15,188 1D-CNN Keras 91.2

Xu et al.  2020 PSG
signals

− DNN − 86.1

Phan et al.
 2019

EEG +
EOG

−
Multi-task

CNN
TensorFlow 82.3

Figure 3. Pie chart representation of the frequency in which each sleep database was used in automated sleep

stage classification studies. The total number of studies was 47, as listed in  Table 1,  Table 2,  Table 3,  Table

4 and Table 5. * Summary statistics: using various databases for sleep stage classification.

Table 2.  Summary of automated sleep stage classification approaches with DL applied to PSG recordings in

Expanded Sleep-EDF dataset.

Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

Wang et al.  2018 EEG − C-CNN − −

Wang et al.  2018 EEG −
RNN-

biLSTM
− −

Fernandez-Blanco et al.
 2020

EEG − CNN − 92.7
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Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

Yildirim et al.  2019 EEG 127,512 1D-CNN Keras 90.5

Jadhav et al.  2020 EEG 62,177 CNN − 83.3

Zhu et al.  2020 EEG 42,269
attention

CNN
− 82.8

Mousavi et al.  2019 EEG 222,479 1D-CNN TensorFlow 80.0

Tsinalis et al.  2016 EEG − 2D-CNN Lasagne + Theano 74.0

Yildirim et al.  2019 EOG 127,512 1D-CNN Keras 88.8

Yildirim et al.  2019 EEG +
EOG

127,512 1D-CNN Keras 91.0

Sokolovsky et al.  2019 EEG +
EOG

− CNN TensorFlow + Keras 81.0

Table 3.  Summary of automated sleep stages classification approaches with DL applied to PSG recordings in

Montreal Archive of Sleep Studies (MASS) dataset.
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Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

Seo et al.
 2020 EEG 57,395 CRNN PyTorch 86.5

Supratak et al.
 2017 EEG 58,600 CNN-BiLSTM TensorFlow 86.2

Phan et al.
 2019 EEG −

Multi-task
CNN

TensorFlow 78.6

Dong et al.
 2018 EOG F4 −

MNN RNN-
LSTM

Theano 85.9

Dong et al.
 2018 EOG Fp2 −

MNN RNN-
LSTM

Theano 83.4

Chambon et al.
 2018

EEG/EOG +
EMG

− 2D-CNN Keras −

Phan et al.
 2019

EEG + EOG +
EMG

−
Hierarchical

RNN
TensorFlow 87.1

Phan et al.
 2019

EEG + EOG +
EMG

−
Multi-task

CNN
TensorFlow 83.6
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Table 4. Summary of automated sleep stage classification approaches with DL applied to PSG recordings in Sleep

Heart Health Study (SHHS) and Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) datasets.

Table 5.  Summary of automated sleep stage classification approaches with DL applied to PSG recordings in

ISRUC, Massachusetts General Hospital (MGH), and University College Dublin Sleep Apnea Database (UCD)

datasets.

Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

Phan et al.
 2019

EEG + EOG −
Multi-task

CNN
TensorFlow 82.5[32]

Database Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

MIT-
BIH

Zhang et al.
 2020 EEG −

Orthogonal
CNN

− 87.6

Zhang et al.
 2018 EEG − CUCNN MATLAB 87.2

SHHS

Sors et al.
 2018 EEG 5793 CNN − 87.0

Seo et al.
 2020 EEG 5,421,338 CRNN PyTorch 86.7

Fernández-
Varela et al.

 2019

EEG +
EOG +
EMG

1,209,971 1D-CNN − 78.0

Zhang et al.
 2019

EEG +
EOG +
EMG

5793 CNN-LSTM − −

SHHS Li et al.  2018
ECG
HRV

400,547 CNN MATLAB 65.9

MIT-
BIH

Li et al.  2018
ECG
HRV

2829 CNN MATLAB 75.4

Tripathy et al.
 2018

EEG +
HRV

7500
DNN

Autoencoder
MATLAB 73.7
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Database Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

ISRUC

Cui et al.
 2018 EEG − CNN − 92.2

Yang et al.
 2018 EEG − CNN-LSTM − −

UCD Zhang et
al.  2020 EEG −

Orthogonal
CNN

− 88.4

Zhang et
al.  2018 EEG − CUCNN MATLAB 87.0
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* The accuracy scores in Table 1, Table 2, Table 3, Table 4 and Table 5 are based on AASM guidelines, five class

classification [21].

Figure 4 shows the number of times PSG recordings such as EEG, EOG, EMG, and ECG signals were used for

sleep stage classification studies. It is not surprising that EEG signal was the most popular input for DL models.

The characteristic waves and description of each sleep stages are often based on EEG characteristics (i.e., alpha

waves, theta waves, delta waves, etc.); Figure 1.

Figure 4. Different subsets of PSG recordings used to train DL models for automated sleep stage classification as

listed in Table 1, Table 2, Table 3, Table 4 and Table 5. Of the 36 studies, the mixture of signals (electrooculogram

(EOG), electromyogram (EMG), and electroencephalography (EEG)) was employed 14 times while EEG signals

were used 28 times. Only a small fraction (five studies) employed ECG or EOG time series. * Summary statistics:

using EEG versus EEG + additional signals.

Nonetheless, other signals within the PSG recordings are indispensable, because they provide additional

information on biological aspects of sleep that may not be manifested in EEG recordings. Since REM sleep is

characterized by the movement of eyes and loss in muscle tone of the body core, EOG, and EMG signals may

provide key information to separate the REM sleep stage from the other stages. It was shown that some of the

REM sleep stages could be overlooked in single-channel EEG input . Therefore, a combination of signals,

Database Author Signals Samples Approach Tools/Programming
Languages

Accuracy
(%)

Yuan et al.
 2019

Multivariate
PSG signals

287,840 Hybrid CNN PyTorch 74.2

Private
datasets

Zhang et
al.  2020

EEG 264,736 CNN − 96.0

Biswal et
al.  2018

PSG signals 10,000 RCNN PyTorch 87.5

Biswal et
al.  2017

EEG 10,000 RCNN TensorFlow 85.7

          Class = 4

Radha et
al.  2019

ECG HRV 541,214 LSTM − 77.0
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comprising of EOG, EMG, and EEG, are second in terms of frequency of use after single-channel EEG inputs

(Figure 4).

Although ECG is an important sleep parameter , it is not common to use raw ECG signals as a direct input for

DL models. As seen in Table 4, heart rate variability (HRV) parameters derived from ECG signals, were used to

train the DL models instead. There are only three studies that employed HRV parameters, and these studies

classified sleep into four stages instead of five: wakefulness (W), light sleep (S1 and S2), deep sleep (S3 and S4),

and REM sleep. Li et al.  proposed a 3-layer CNN model. They used a cardiorespiratory coupling (CRC)

spectrogram, which was derived from ECG and HRV. Besides alternations in physiological signals, there are other

changes in body system changes in some individuals such as cardiovascular , respiratory , or blood flow in

the brain . Hence, the CRC picks up the cardiovascular and respiratory changes. Their model achieved an

overall accuracy of 65.9% and 75.4% for SHHS and MIT-BIH respectively, as seen in Table 4. Tripathy et al. 

combined EEG and HRV features as input to an AE model. During testing, the model achieved an overall accuracy

of 73.7%. Radha et al.  published the only study that was based on ECG signals from a private dataset that was

collected as part of the European Union SIESTA project  as shown in Table 5. Likewise, they converted ECG

signals into HRV and used the HRV features to train an LSTM model, which achieved an accuracy of 77.0%.

3. Conclusions

Sleep disorders are a pressing global issue and the most dangerous sleep disorder is obstructive sleep apnea,

which can lead to cardiovascular diseases, if left untreated. Hence, efficient, and accurate diagnostic tools are

required for early interventions. In this work, we reviewed 36 studies that employed programmed diagnostic tools

with the DL models as the backbone, analyzing overnight polysomnogram recordings to classify sleep stages.

Presently, CNN models can offer higher performance in classifying sleep stages, especially with EEG signals.

Hence, they are consistently and favourably used by researchers to classify sleep stages as compared to the other

machine learning models and physiological signals. Moreover, employing 1D-CNN models is advantageous,

because they yield high classification results on EEG signals. However, EEG signals alone may not be sufficient to

achieve robust classifications. To achieve robustness and high accuracy one could develop a system that takes

advantage of both automated processing and human expert analysis for the interpretation of EEG, EOG, and EMG

signals when classifying sleep stages. Therefore, in this review, we highlighted that future studies should focus on

classifying sleep stages using all or a combination of these signals. Furthermore, other DL models, such as

RNN/LSTM and hybrid models, should also be explored as their full potential has yet to be realized. Future studies

could focus on the compatibility and applicability of the DL models in mobile and real time applications. Lastly, more

research in developing DL models to detect sleep microstructures is required, as these are often undetected in

sleep stage scoring.

References

[55]

[19]

[56] [57]

[58]

[20]

[21]

[59]



Sleep Stages Detection Using DL | Encyclopedia.pub

https://encyclopedia.pub/entry/6111 10/14

1. Laposky, A.; Bass, J.; Kohsaka, A.; Turek, F.W. Sleep and circadian rhythms: Key components in
the regulation of energy metabolism. FEBS Lett. 2007, 582, 142–151.

2. Cho, J.W.; Duffy, J.F. Sleep, sleep disorders, and sexual dysfunction. World J. Men’s Health 2019,
37, 261–275.

3. Institute of Medicine (US), Committee on Sleep Medicine and Research. Sleep Disorders and
Sleep Deprivation: An Unmet Public Health Problem; Colten, H.R., Altevogt, B.M., Eds.; National
Academies Press: Washington, DC, USA, 2006.

4. Stranges, S.; Tigbe, W.; Gómez-Olivé, F.X.; Thorogood, M.; Kandala, N.-B. Sleep problems: An
emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than
40,000 older adults from 8 countries across Africa and Asia. Sleep 2012, 35, 1173–1181.

5. Schulz, H. Rethinking sleep analysis. J. Clin. Sleep Med. 2008, 4, 99–103.

6. Spriggs, W.H. Essentials of Polysomnography; Jones & Bartlett Learning: Burlington, MA, USA,
2014.

7. Silber, M.H.; Ancoli-Israel, S.; Bonnet, M.H.; Chokroverty, S.; Grigg-Damberger, M.M.;
Hirshkowitz, M.; Kapen, S.; A Keenan, S.; Kryger, M.H.; Penzel, T.; et al. The visual scoring of
sleep in adults. J. Clin. Sleep Med. 2007, 3, 121–131.

8. Corral, J.; Pepin, J.-L.; Barbé, F. Ambulatory monitoring in the diagnosis and management of
obstructive sleep apnoea syndrome. Eur. Respir. Rev. 2013, 22, 312–324.

9. Hori, T.; Sugita, Y.; Koga, E.; Shirakawa, S.; Inoue, K.; Uchida, S.; Kuwahara, H.; Kousaka, M.;
Kobayashi, T.; Tsuji, Y.; et al. Proposed sments and amendments to ‘A Manual of Standardized
Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects’, the
Rechtschaffen & Kales (1968) standard. Psychiatry Clin. Neurosci. 2001, 55, 305–310.

10. Carley, D.W.; Farabi, S.S. Physiology of sleep. Diabetes Spectr. 2016, 29, 5–9.

11. Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan, S.F. The AASM Manual for the Scoring of Sleep
and Associated Events: Rules, Terminology and Technical Specification; American Academy of
Sleep Medicine: Darien, IL, USA, 2007.

12. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.;
Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation
2000, 101, e215–e220.

13. Kemp, B.; Zwinderman, A.; Tuk, B.; Kamphuisen, H.; Oberye, J. Analysis of a sleep-dependent
neuronal feedback loop: The slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng.
2000, 47, 1185–1194.

14. Zhang, G.-Q.; Cui, L.; Mueller, R.; Tao, S.; Kim, M.; Rueschman, M.; Mariani, S.; Mobley, D.R.;
Redline, S. The national sleep research resource: Towards a sleep data commons. J. Am. Med.



Sleep Stages Detection Using DL | Encyclopedia.pub

https://encyclopedia.pub/entry/6111 11/14

Inform. Assoc. 2018, 25, 1351–1358.

15. Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.; Rapoport, D.M.; Redline,
S.; Robbins, J.; Samet, J.M.; et al. The sleep heart health study: Design, rationale, and methods.
Sleep 1997, 20, 1077–1085.

16. Ichimaru, Y.; Moody, G. Development of the polysomnographic database on CD-ROM. Psychiatry
Clin. Neurosci. 1999, 53, 175–177.

17. Khalighi, S.; Sousa, T.; Santos, J.M.; Nunes, U. ISRUC-Sleep: A comprehensive public dataset for
sleep researchers. Comput. Methods Programs Biomed. 2016, 124, 180–192.

18. O’Reilly, C.; Gosselin, N.; Carrier, J.; Nielsen, T. Montreal archive of sleep studies: An open-
access resource for instrument benchmarking and exploratory research. J. Sleep Res. 2014, 23,
628–635.

19. Li, Q.; Li, Q.C.; Liu, C.; Shashikumar, S.P.; Nemati, S.; Clifford, G.D. Deep learning in the cross-
time frequency domain for sleep staging from a single-lead electrocardiogram. Physiol. Meas.
2018, 39, 124005.

20. Tripathy, R.; Acharya, U.R. Use of features from RR-time series and EEG signals for automated
classification of sleep stages in deep neural network framework. Biocybern. Biomed. Eng. 2018,
38, 890–902.

21. Radha, M.; Fonseca, P.; Moreau, A.; Ross, M.; Cerny, A.; Anderer, P.; Long, X.; Aarts, R.M. Sleep
stage classification from heart-rate variability using long short-term memory neural networks. Sci.
Rep. 2019, 9, 1–11.

22. Zhu, T.; Luo, W.; Yu, F. Convolution-and attention-based neural network for automated sleep
stage classification. Int. J. Environ. Res. Public Health 2020, 17, 4152.

23. Qureshi, S.; Karrila, S.; Vanichayobon, S. GACNN SleepTuneNet: A genetic algorithm designing
the convolutional neuralnetwork architecture for optimal classification of sleep stages from a
single EEG channel. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 4203–4219.

24. Yıldırım, Ö.; Baloglu, U.B.; Acharya, U.R. A deep learning model for automated sleep stages
classification using PSG signals. Int. J. Environ. Res. Public Health 2019, 16, 599.

25. Hsu, Y.-L.; Yang, Y.-T.; Wang, J.-S.; Hsu, C.-Y. Automatic sleep stage recurrent neural classifier
using energy features of EEG signals. Neurocomputing 2013, 104, 105–114.

26. Michielli, N.; Acharya, U.R.; Molinari, F. Cascaded LSTM recurrent neural network for automated
sleep stage classification using single-channel EEG signals. Comput. Biol. Med. 2019, 106, 71–
81.

27. Wei, L.; Lin, Y.; Wang, J.; Ma, Y. Time-Frequency Convolutional Neural Network for Automatic
Sleep Stage Classification Based on Single-Channel EEG. In Proceedings of the 2017 IEEE 29th



Sleep Stages Detection Using DL | Encyclopedia.pub

https://encyclopedia.pub/entry/6111 12/14

International Conference on Tools with Artificial Intelligence, Boston, MA, USA, 6–8 November
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 88–95.

28. Mousavi, S.; Afghah, F.; Acharya, U.R. SleepEEGNet: Automated sleep stage scoring with
sequence to sequence deep learning approach. PLoS ONE 2019, 14, e0216456.

29. Seo, H.; Back, S.; Lee, S.; Park, D.; Kim, T.; Lee, K. Intra- and inter-epoch temporal context
network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel
EEG. Biomed. Signal Process. Control 2020, 61, 102037.

30. Zhang, X.; Xu, M.; Li, Y.; Su, M.; Xu, Z.; Wang, C.; Kang, D.; Li, H.; Mu, X.; Ding, X.; et al.
Automated multi-model deep neural network for sleep stage scoring with unfiltered clinical data.
Sleep Breath. 2020, 24, 581–590.

31. Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A model for automatic sleep stage scoring
based on raw single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008.

32. Phan, H.; Andreotti, F.; Cooray, N.; Chén, O.Y.; de Vos, M. Joint classification and prediction CNN
framework for automatic sleep stage classification. IEEE Trans. Biomed. Eng. 2019, 66, 1285–
1296.

33. Vilamala, A.; Madsen, K.H.; Hansen, L.K. Deep convolutional neural networks for interpretable
analysis of EEG sleep stage scoring. In Proceedings of the 2017 IEEE 27th International
Workshop on Machine Learning for Signal Processing (MLSP), Tokyo, Japan, 25–28 September
2017; pp. 1–6.

34. Phan, H.; Andreotti, F.; Cooray, N.; Chen, O.Y.; de Vos, M. DNN filter bank improves 1-max
pooling CNN for single-channel EEG automatic sleep stage classification. In Proceedings of the
2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 453–456.

35. Xu, M.; Wang, X.; Zhangt, X.; Bin, G.; Jia, Z.; Chen, K. Computation-Efficient Multi-Model Deep
Neural Network for Sleep Stage Classification. In Proceedings of the ASSE ’20: 2020 Asia Service
Sciences and Software Engineering Conference, Nagoya, Japan, 13–15 May 2020; Association
for Computing Machinery: New York, NY, USA, 2020; pp. 1–8.

36. Wang, Y.; Wu, D. Deep Learning for Sleep Stage Classification. In Proceedings of the 2018
Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 3833–3838.

37. Fernandez-Blanco, E.; Rivero, D.; Pazos, A. Convolutional neural networks for sleep stage
scoring on a two-channel EEG signal. Soft Comput. 2019, 24, 4067–4079.

38. Jadhav, P.; Rajguru, G.; Datta, D.; Mukhopadhyay, S. Automatic sleep stage classification using
time-frequency images of CWT and transfer learning using convolution neural network.
Biocybern. Biomed. Eng. 2020, 40, 494–504.



Sleep Stages Detection Using DL | Encyclopedia.pub

https://encyclopedia.pub/entry/6111 13/14

39. Tsinalis, O.; Matthews, P.M.; Guo, Y.; Zafeiriou, S. Automatic Sleep Stage Scoring with Single-
Channel EEG Using Convolutional Neural Networks; Imperial College London: London, UK, 2016.

40. Sokolovsky, M.; Guerrero, F.; Paisarnsrisomsuk, S.; Ruiz, C.; Alvarez, S.A. Deep learning for
automated feature discovery and classification of sleep stages. IEEE/ACM Trans. Comput. Biol.
Bioinform. 2019, 17.

41. Dong, H.; Supratak, A.; Pan, W.; Wu, C.; Matthews, P.M.; Guo, Y. Mixed neural network approach
for temporal sleep stage classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 324–
333.

42. Chambon, S.; Galtier, M.N.; Arnal, P.J.; Wainrib, G.; Gramfort, A. A deep learning architecture for
temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans.
Neural Syst. Rehabil. Eng. 2018, 26, 758–769.

43. Phan, H.; Andreotti, F.; Cooray, N.; Chén, O.Y.; de Vos, M. SeqSleepNet: End-to-end hierarchical
recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Trans. Neural
Syst. Rehabil. Eng. 2019, 27, 400–410.

44. Zhang, J.; Yao, R.; Ge, W.; Gao, J. Orthogonal convolutional neural networks for automatic sleep
stage classification based on single-channel EEG. Comput. Methods Programs Biomed. 2020,
183, 105089.

45. Zhang, J.; Wu, Y. Complex-valued unsupervised convolutional neural networks for sleep stage
classification. Comput. Methods Programs Biomed. 2018, 164, 181–191.

46. Sors, A.; Bonnet, S.; Mirek, S.; Vercueil, L.; Payen, J.-F. A convolutional neural network for sleep
stage scoring from raw single-channel EEG. Biomed. Signal Process. Control 2018, 42, 107–114.

47. Fernández-Varela, I.; Hernández-Pereira, E.; Alvarez-Estevez, D.; Moret-Bonillo, V. A
Convolutional Network for Sleep Stages Classification. arXiv 2019, arXiv:1902.05748v1.

48. Zhang, L.; Fabbri, D.; Upender, R.; Kent, D.T. Automated sleep stage scoring of the Sleep Heart
Health Study using deep neural networks. Sleep 2019, 42.

49. Cui, Z.; Zheng, X.; Shao, X.; Cui, L. Automatic sleep stage classification based on convolutional
neural network and fine-grained segments. Complexity 2018, 2018, 1–13.

50. Yang, Y.; Zheng, X.; Yuan, F. A Study on Automatic Sleep Stage Classification Based on CNN-
LSTM. In Proceedings of the ICCSE’18: The 3rd International Conference on Crowd Science and
Engineering, Singapore, 28–31 July 2018; Association for Computing Machinery: New York, NY,
USA, 2018; pp. 1–5.

51. Yuan, Y.; Jia, K.; Ma, F.; Xun, G.; Wang, Y.; Su, L.; Zhang, A. A hybrid self-attention deep learning
framework for multivariate sleep stage classification. BMC Bioinform. 2019, 20, 1–10.



Sleep Stages Detection Using DL | Encyclopedia.pub

https://encyclopedia.pub/entry/6111 14/14

52. Biswal, S.; Sun, H.; Goparaju, B.; Westover, M.B.; Sun, J.; Bianchi, M.T. Expert-level sleep
scoring with deep neural networks. J. Am. Med. Inform. Assoc. 2018, 25, 1643–1650.

53. Biswal, S.; Kulas, J.; Sun, H.; Goparaju, B.; Westover, M.B.; Bianchi, M.T.; Sun, J. SLEEPNET:
Automated Sleep Staging System via Deep Learning. arXiv 2017, arXiv:1707.08262.

54. Faust, O.; Razaghi, H.; Barika, R.; Ciaccio, E.J.; Acharya, U.R. A review of automated sleep stage
scoring based on physiological signals for the new millennia. Comput. Methods Programs
Biomed. 2019, 176, 81–91.

55. Hoshide, S.; Kario, K. Sleep Duration as a risk factor for cardiovascular disease—A review of the
recent literature. Curr. Cardiol. Rev. 2010, 6, 54–61.

56. Woods, S.L.; Froelicher, E.S.S.; Motzer, S.U.; Bridges, S.J. Cardiac Nursing, 5th ed.; Lippincott
Williams and Wilkins: London, UK, 2005.

57. Krieger, J. Breathing during sleep in normal subjects. Clin. Chest Med. 1985, 6, 577–594.

58. Madsen, P.L.; Schmidt, J.F.; Wildschiodtz, G.; Friberg, L.; Holm, S.; Vorstrup, S.; Lassen, N.A.
Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement
sleep. J. Appl. Physiol. 1991, 70, 2597–2601.

59. Klosh, G.; Kemp, B.; Penzel, T.; Schlogl, A.; Rappelsberger, P.; Trenker, E.; Gruber, G.; Zeithofer,
J.; Saletu, B.; Herrmann, W.; et al. The SIESTA project polygraphic and clinical database. IEEE
Eng. Med. Boil. Mag. 2001, 20, 51–57.

Retrieved from https://encyclopedia.pub/entry/history/show/14571


