Sleep Stages Detection Using DL | Encyclopedia.pub

Sleep Stages Detection Using DL

Subjects: Others
Contributor: Oliver Faust , Chui Ping Ooi

Sleep is vital for one’s general well-being, but is often neglected, which has led to an increase in sleep disorders
worldwide. Indicators of sleep disorders, such as sleep interruptions, extreme daytime drowsiness, or snoring, can
be detected with sleep analysis. However, sleep analysis relies on visuals conducted by experts, and is susceptible
to inter- and intra-observer variabilities. One way to overcome these limitations is to support experts with a
programmed diagnostic tool (PDT) based on artificial intelligence for timely detection of sleep disturbances.
Artificial intelligence technology, such as deep learning (DL), ensures that data are fully utilized with low to no
information loss during training.

sleep disorder,obstructive sleep disorder,overnight polysomnogram,EEG,EMG,ECG,HRV signals,deep

learning

| 1. Introduction

Sleep is crucial for the maintenance and regulation of various biological functions at a molecular level &, which
helps humans to restore physical and mental wellbeing and proper brain function during the day 2. There are two
primary types of sleep: non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep
comprises four stages, after which, it continues into the REM sleep stage. NREM and REM sleep stages are
connected and cyclically alternated through the sleep process wherein unbalanced cycling or the absence of sleep
stages give rise to sleep disorders B, Unfortunately, sleep disorders, which lead to poor sleep quality, are often
neglected ¥, Stranges et al. 4 highlighted that sleep-related problems is a looming global health issue. In their
study, datasets from the World Health Organization (WHO) and International Network for the Demographic
Evaluation of Populations and Their Health (INDEPTH) were used to investigate the prevalence of sleep problems
in low-income countries. It was reported that 16.6% of the adult population, which amounts to approximately 150

million, have sleep problems and current trends indicate that this figure will increase to 260 million by 2030.

To date, it is mandatory that sleep stage scoring is done manually by human experts I8, However, human experts
have limited capacity to handle slow changes in background electroencephalography (EEG) and learn the different
rules to score sleep stages for various polysomnogram (PSG) recordings 8. Furthermore, evaluations by human
experts are prone to inter- and intra-observer variabilities that can negatively affect the quality of sleep stage
scoring 4. Other important factors affecting sleep stage scoring are patient convenience and diagnosis cost. As
such, a sleep lab is a highly controlled environment that requires dedicated facilities and highly trained personnel.
Hence, sleep labs tend to be in urban centers and patients must travel there to spend one or multiple nights in the

facility. These factors make sleep labs inconvenient for patients and the cost per diagnosis is high. Other diagnostic
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methods, such as portable monitoring devices for sleep stages, exhibit some advantages, such as enhancing
access to patients, low cost, and user-friendliness. However, these advantages are outweighed by several
disadvantages, such as having diagnostic limitations, failure of device, reliability concerns, and underestimating the
apnea/hypopnea index, amongst others . To improve the situation requires a fundamental change in the sleep
stage scoring process. We need machines to replace the labor carried out by human experts. This can only be
done with systems that understand sleep stages in much of the same way as human experts do. Deep learning
(DL) is hailed as a method to mechanize knowledge work, such as sleep stage scoring. However, before we join

and adopt this technology, it is prudent to investigate both capabilities and limitations of current DL methods.

| 2. Sleep Stages Classification Using DL Models
2.1. Different Stages of Sleep

According to Rechtschaffen and Kales (R and K) [, humans can experience six discrete stages during sleep: (1)
wakefulness (W), (2) rapid eye movement (REM) sleep, and (3) four stages of non-REM (NREM) sleep (S1 to S4)
(20l Based on the sleep electroencephalogram (EEG) characteristics, W occurs when the brain is most active,
which is represented by high frequency of alpha rhythms. In the NREM sleep, these alpha rhythms eventually
diminish when entering the S1 wherein theta rhythm dominates instead. In the S2, sleep spindles and occasional
K-complex waveform will appear. The K-complex waveform usually lasts for approximately 1 to 2 s. The S3 sleep
occurs when low frequency delta rhythms appear intermittently and eventually, they dominate in the S4 sleep.
Finally, REM sleep usually follows after the S4 sleep. In the REM sleep, theta rhythms resurface again, but unlike
in the S1 sleep, theta rhythms are accompanied with EEG flattening [22. Following the guidelines from American
Academy of Sleep Medicine (AASM), the S3 and S4 sleep stages can be merged into one sleep stage S3,
because of the similarity in their characteristics 2. Since the delta rhythms are the slowest EEG waves, S3 and
S4 sleep stages are known as Slow Wave Sleep (SWS) or the deep sleep. Thus, most sleep classification studies
are based on five: W, S1, S2, S3, and REM sleep stages, instead of six (Figure 1).

AN\t o W\W

MREM stage 1 (51) NREM stage 2 (52) NREM stage 3 (53)
REM Wakefulness (w)

Figure 1. Examples of electroencephalography (EEG) signals in different sleep stages.
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2.2. Sleep Databases

Eight main sleep databases have been used for automated sleep stage classifications. Five of the databases are
free to download from PhysioNet 12l namely the Sleep-EDF 13l the expanded Sleep-EDF 13 the St. Vincent's
University Hospital/University College Dublin Sleep Apnea Database (UCD) 12 the Sleep Heart Health Study
(SHHS) [24I15] and the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) 18 database. The
ISRUC-Sleep datasets [XZ! can be downloaded from the official websites. Permission is required to obtain the sleep
datasets from the Montreal Archive of Sleep Studies (MASS) 18],

The PSG recordings, in most of the sleep databases, are scored according to R and K rules &, wherein scoring is
done based on wakefulness, NREM sleep and REM sleep. NREM sleep is then subdivided into four stages (S1 to
S4). Exceptions are ISRUC and MASS which follow the AASM guideline and partition the recordings into five sleep
stages instead of six 21,

2.3. DL Techniques Used in Automatic Sleep Stage Classification

The development of a program diagnostic tool (PDT) for automatic sleep stage classification using DL techniques
is shown in Figure 2. First, PSG recordings have to be pre-processed to achieve standardization or normalization.
Depending on the requirement and architecture of the proposed DL model, additional steps to convert the PSG
recordings into the right input format is required; for example, converting one-dimensional (1D) signals into a two-
dimensional (2D) format to train 2D-CNN models. Subsequently, the pre-processed signals are split into training,
validation, and testing sets. The training set is used to train the model, the validation set is to fine-tune the model,
and the testing set is used to evaluate the model's performance. A well-trained model can accurately classify PSG

recordings into the five sleep stages.

Podyromnogram Deep learning

Overnight
Polysomnogram

Figure 2. Programmed diagnostic tool (PDT) block diagram with DL for automated sleep stage classification.

Figure 3 illustrates the number of times each sleep database had been used by studies for automated sleep stage
classification using DL techniques, from 2010 to 2020. The DL methods and accuracy obtained from the respective
sleep databases are summarized as follows: Sleep-EDF (Table 1), expanded Sleep-EDF (Table 2), MASS (Table
3), MIT-BIH, and SHHS (Table 4), and studies that used the remaining two sleep databases (ISRUC and UCD) and
private datasets are listed in Table 5. With the exception of three studies [1911201121] \which classified sleep into four

stages, all automated sleep stage classification studies, in Table 1, Table 2, Table 3, Table 4 and Table 5, followed

the AASM guidelines (11l and classified sleep into five stages. In studies with sleep databases following the R and K

https://encyclopedia.pub/entry/6111 3/14



Sleep Stages Detection Using DL | Encyclopedia.pub

rules [, (i.e., Sleep-EDF, expanded Sleep-EDF, UCD, SHHS, and MIT-BIH), the S3 and S4 stages were often

combined manually before pre-processing the PSG signals.

Table 1. Summary of automated sleep stage classification approaches with DL applied to PSG recordings in Sleep-

EDF dataset.

. Tools/Programming Accuracy
Author Signals Samples Approach Languages (%)
Zhu et al. 221 2020 EEG 15,188  attention CNN - 93.7
Qureshi et al. EEG 41,900 CNN - 92.5
(231 2019 : '
MU EEG 15,188 1D-CNN K 90.8
[24] 2019 s - eras .
Hsu et al. (23] 2013 EEG 2880 Elman RNN - 87.2
Michielli et al.
281 5019 EEG 10,280 RNN-LSTM MATLAB 86.7
Wei et al. (22 2017 EEG -~ CNN - 84.5
Mousavi etal EEG 42,308  CNN-BiRNN TensorFl 84.3
[28] 2019 s -bl ensorriow .
Seo et al. 2912020 EEG 42,308 CRNN PyTorch 83.9
Zhang et al. EEG B CNN B 836
(39 2020 '
SIFEELCEGL EEG 41,950 CNN-BiLSTM TensorFl 82.0
[31] 2017 s -bl ensorriow .
Phan et al. Multi-task
321 5019 EEG - CNN TensorFlow 81.9
Vilamala et al. EEG B CNN B 81.3
(331 2017 '
Phan et al.
4 5018 EEG - 1-max CNN - 79.8
Phan et al. Attentional
341 2018 £ B RNN B 791
Yildirim et al.
241 5019 EOG 15,188 1D-CNN Keras 89.8
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Author Signals Samples Approach TOOIEg;S;ZI:: "9 Ac%l;:)acy
Y”["é‘_j{]"znoiga'- EEE§G+ 15188  1D-CNN Keras 91.2
Xu et al. 81 2020 PSG - DNN - 86.1
signals
P&inzgtlgl- EEES(; . MUCItLﬁSk TensorFlow 82.3
MIT-BIH (4, 9%) SHHS (5, 11%)

ISRUC (2, 4%) Private
Dataset

UCD (3, 6%) (4,8%)

Sleep-EDF MASS (6, 13%)

expanded
(8, 17%)

Sleep-EDF (15, 32%)

Figure 3. Pie chart representation of the frequency in which each sleep database was used in automated sleep

stage classification studies. The total number of studies was 47, as listed in Table 1, Table 2, Table 3, Table

4 and Table 5. * Summary statistics: using various databases for sleep stage classification.

Table 2. Summary of automated sleep stage classification approaches with DL applied to PSG recordings in

Expanded Sleep-EDF dataset.

Tools/Programming Accuracy

Author Signhals Samples Approach Languages (%)
Wang et al. B8 2018 EEG - C-CNN - -
RNN-
Wang et al. 381 2018 - - -
g =B bILSTM
Fernandez-Blanco et al. EEG B CNN _ 92.7

871 2020
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Author
Yildirim et al. 24! 2019 EEG 127,512
Jadhav et al. B8 2020 EEG 62,177
Zhu et al. 221 2020 EEG 42,269
Mousavi et al. 28 2019 EEG 222,479
Tsinalis et al. B2 2016 EEG -
Yildirim et al. 24! 2019 EOG 127,512
o EEG +
Yildirim et al. 241 2019
Eog 127512
EEG +
Sokolovsky et al. 49 2019 -
y EOG

Signals Samples Approach

1D-CNN

CNN

attention
CNN

1D-CNN

2D-CNN

1D-CNN

1D-CNN

CNN

Keras

TensorFlow

Lasagne + Theano

Keras

Keras

TensorFlow + Keras

Tools/Programming Accuracy
Languages

(%)
90.5

83.3

82.8

80.0
74.0

88.8

91.0

81.0

Table 3. Summary of automated sleep stages classification approaches with DL applied to PSG recordings in
Montreal Archive of Sleep Studies (MASS) dataset.

Author Signals
Seo et al. EEG
291 2020
Supratak et al. EEG
(311 2017
Phan et al. EEG
(321 2019
Dong et al.
[41] 5018 EOG F4
Dong et al.
4] 5018 EOG Fp2
Chambon et al. EEG/EOG +
(421 2018 EMG
Phan et al. EEG + EOG +
(431 2019 EMG
Phan et al. EEG + EOG +
(321 2019 EMG

Samples Approach

CRNN

CNN-BILSTM

Multi-task
CNN

MNN RNN-
LSTM

MNN RNN-
LSTM

2D-CNN

Hierarchical
RNN

Multi-task
CNN

Tools/Programming

Languages

PyTorch

TensorFlow

TensorFlow

Theano

Theano

Keras

TensorFlow

TensorFlow

Accuracy
(%)
86.5
86.2
78.6

85.9

83.4

87.1

83.6
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. Tools/Programming Accuracy s in Sleep
Author Signals Samples Approach Languages (%
asets.
P[gn,ﬁ: 2" EEG + EOG = Mﬂtﬁ% TensorFlow 82.5
. Tools/Programming Accuracy
Database Author Signals Samples Approach Languages (%)
Zhang et al. Orthogonal
EEG = = 87.6
[44] 2020
MIT- CNN
BIH Zhang et al.
451 5018 EEG - CUCNN MATLAB 87.2
Sors et al.
1481 2018 EEG 5793 CNN - 87.0
Seo et al.
291 020 EEG 5,421,338 CRNN PyTorch 86.7
SHHS Fernandez- EEG +
Varela et al. EOG + 1,209,971 1D-CNN = 78.0
[471 2019 EMG
EEG +
Zr[ﬁ?g Oeltga" EOG + 5793 CNN-LSTM - -
EMG
. [19] ECG
SHHS Li et al. 2018 HRVY 400,547 CNN MATLAB 65.9
Li et al. 24 2018 E(é?/ 2829 CNN MATLAB 75.4
MIT-
BIH .
Tripathy et al. EEG + DNN
(201 2018 HRV 7500 Autoencoder MATLAB 3.7 _ '
) - rdings in

ISRUC, Massachusetts General Hospital (MGH), and University College Dublin Sleep Apnea Database (UCD)
datasets.

Database  Author Signals Samples Approach Ll i Gl e BT 0

Languages (%)
Cui et al.
9] 9018 EEG - CNN - 92.2
ISRUC

LY GIEL EEG = CNN-LSTM - -

(591 2018 i
uUcb Zhang et Orthogonal

al. 441 2020 S3C B CNN B 884
AT EEG - CUCNN MATLAB 87.0

al. 4312018 '
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Tools/Programming Accuracy

Database  Author Signals Samples Approach Languages (%)
Yﬁnzgtlg" Q"S“(';“‘;‘I"g':‘;i 287,840  Hybrid CNN PyTorch 74.2
af*[g]”gcfzto EEG 264,736 CNN - 96.0
a?i—,_‘é"az'oelts PSG signals 10,000 RCNN PyTorch 87.5
dz.rtiz::,:(:fs Bi%val et EEG 10,000 RCNN TensorFlow 85.7 p used for
al. == 2017 _ models.
Class = 4 -e., alpha
aﬁ""z[j]hgoeltg ECGHRV 541,214 LSTM - 77.0
* The accura Mixture of es, five class

classification signats {14, 30%)

EEG (28, 60%)
ECG (3, 6%)

EOG (2, 4%)

Figure 4. Different subsets of PSG recordings used to train DL models for automated sleep stage classification as
listed in Table 1, Table 2, Table 3, Table 4 and Table 5. Of the 36 studies, the mixture of signals (electrooculogram

(EOG), electromyogram (EMG), and electroencephalography (EEG)) was employed 14 times while EEG signals
were used 28 times. Only a small fraction (five studies) employed ECG or EOG time series. * Summary statistics:

using EEG versus EEG + additional signals.

Nonetheless, other signals within the PSG recordings are indispensable, because they provide additional
information on biological aspects of sleep that may not be manifested in EEG recordings. Since REM sleep is
characterized by the movement of eyes and loss in muscle tone of the body core, EOG, and EMG signals may
provide key information to separate the REM sleep stage from the other stages. It was shown that some of the

REM sleep stages could be overlooked in single-channel EEG input 4. Therefore, a combination of signals,
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comprising of EOG, EMG, and EEG, are second in terms of frequency of use after single-channel EEG inputs

(Eigure 4).

Although ECG is an important sleep parameter 3, it is not common to use raw ECG signals as a direct input for

DL models. As seen in Table 4, heart rate variability (HRV) parameters derived from ECG signals, were used to

train the DL models instead. There are only three studies that employed HRV parameters, and these studies
classified sleep into four stages instead of five: wakefulness (W), light sleep (S1 and S2), deep sleep (S3 and S4),
and REM sleep. Li et al. 22 proposed a 3-layer CNN model. They used a cardiorespiratory coupling (CRC)
spectrogram, which was derived from ECG and HRV. Besides alternations in physiological signals, there are other
changes in body system changes in some individuals such as cardiovascular B8, respiratory 7, or blood flow in
the brain 8. Hence, the CRC picks up the cardiovascular and respiratory changes. Their model achieved an
overall accuracy of 65.9% and 75.4% for SHHS and MIT-BIH respectively, as seen in Table 4. Tripathy et al. 29
combined EEG and HRV features as input to an AE model. During testing, the model achieved an overall accuracy
of 73.7%. Radha et al. 21 published the only study that was based on ECG signals from a private dataset that was
collected as part of the European Union SIESTA project 59 as shown in Table 5. Likewise, they converted ECG

signals into HRV and used the HRYV features to train an LSTM model, which achieved an accuracy of 77.0%.

| 3. Conclusions

Sleep disorders are a pressing global issue and the most dangerous sleep disorder is obstructive sleep apnea,
which can lead to cardiovascular diseases, if left untreated. Hence, efficient, and accurate diagnostic tools are
required for early interventions. In this work, we reviewed 36 studies that employed programmed diagnostic tools
with the DL models as the backbone, analyzing overnight polysomnogram recordings to classify sleep stages.
Presently, CNN models can offer higher performance in classifying sleep stages, especially with EEG signals.
Hence, they are consistently and favourably used by researchers to classify sleep stages as compared to the other
machine learning models and physiological signals. Moreover, employing 1D-CNN models is advantageous,
because they yield high classification results on EEG signals. However, EEG signals alone may not be sufficient to
achieve robust classifications. To achieve robustness and high accuracy one could develop a system that takes
advantage of both automated processing and human expert analysis for the interpretation of EEG, EOG, and EMG
signals when classifying sleep stages. Therefore, in this review, we highlighted that future studies should focus on
classifying sleep stages using all or a combination of these signals. Furthermore, other DL models, such as
RNN/LSTM and hybrid models, should also be explored as their full potential has yet to be realized. Future studies
could focus on the compatibility and applicability of the DL models in mobile and real time applications. Lastly, more
research in developing DL models to detect sleep microstructures is required, as these are often undetected in

sleep stage scoring.
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