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Novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to

yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF).

Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher

sensitivity rendered by augmented fluorescence signals. Metallic thin films sustaining surface plasmon polaritons

(SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global

collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). This Editorial

Review by Dr. Seemesh Bhaskar, University of Illinois Urbana-Champaign, provides a spotlight on the latest

developments in SPCE substrate engineering to the broad audience of photo-plasmonics, spectroscopy, micro- &

nanotechnology, life sciences, thin films and point-of-care diagnostics.

surface plasmon coupled emission  luminescence  nano-engineering  smartphone diagnostics
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1. Introduction

(Snippets) Fluorescence spectroscopy has revealed great promise with myriad probes and devices demonstrating

a rich spectrum of applications related to biological and chemical sensing, topographical analysis, immunoassays,

optofluidics, forensics, microscopy, single molecule detection, environmental health monitoring as well as myriad

point-of-care (POC) diagnostic technologies . In an attempt to obtain enhanced signal intensities in

traditional fluorescence-based analytical detection methodologies, it has been synergized with the

metallic/plasmonic nanomaterials garnering active optoelectronic functionalities . Such explorations

have significantly advanced the frontier areas of biosensing research with several economical and industrial

applications. This is on account of the ability of researchers to tailor the excitation and emission intensities of

fluorescent moieties by placing them in the proximal vicinity of the plasmonic nanoparticles (NPs) sustaining

localized surface plasmon resonances (LSPR) . The high-gradient electromagnetic (EM) field intensity

provided by such LSPRs assist augmented sensitivity in analyte detection on account of substantial modification in

the local density of states (LDoS) . Moreover, it has been observed that the resonant charge density

perturbations in plasmonic NPs interact with the fluorophores in the near-field, and consequently, the emitters

assist in the generation of plasmons that radiate into the far-field, carrying the emission characteristics of the

fluorophores . From this perspective, the resulting hybrid system of metal-fluorophore generates an efficient

plasmophore (plasmon + fluorophore), transmitting the optical features of the individual counterparts. Furthermore,
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such an increase in the fluorescence intensity is attributed to the high radiative decay rate, robust photostability as

well as the decrease in the lifetimes, ensuing an associated upsurge in the global quantum yield. Such

investigations where the light (emission)–matter (nanomaterial) interactions assist in optical trapping, tuning,

control, evaluation and manipulation of the resultant fluorescence intensity have developed into a mature field

termed ‘plasmon-enhanced fluorescence (PEF)’ . These explorations have supported the

comprehension of diverse novel phenomena in the sub-fields of nanophotonics, such as metal-dependent

plasmonics , graphene-based plasmonics , dielectric-dependent metamaterials  and photonic crystals (PCs)

, to name a few.

Nevertheless, in spite of the abovementioned application potential of PEF technologies, the far-reaching

capabilities of the fluorescence-based analytical detection systems are compromised on account of the

omnidirectional (isotropic) emission and allied low-signal collection efficiency (<1%), photobleaching and high

background noise . In order to overcome these limitations, Lakowicz and co-workers developed an

innovative technology termed surface plasmon coupled emission (SPCE) in a series of research credentials termed

radiative decay engineering, ‘one to eight’ . SPCE platform is a prism coupling technique

where the fluorescence is coupled to the surface plasmon polaritons (SPPs) of the metal thin film assisting in the

realization of >50% signal collection efficiency, on account of exceptional directionality of emission. Further to the

high p-polarized attribute of the emission signal (reinforced by the SPPs of the metal thin film), the SPCE fosters a

10–15-fold enhancement in the signal vis-à-vis conventional fluorescence, with high background suppression and

spectral resolution . In an attempt to further increase the fluorescence enhancements observed in the SPCE

framework, Chowdhury et al. demonstrated the utility of plasmonic AgNPs as active spacer material . This has

assisted in the realization of 60-fold SPCE enhancements; following which, several other nano-architectures with

numerous sizes, shapes and assemblies have been examined in the SPCE platform for achieving amplified SPCE

enhancements . Such synergy of fluorescence spectroscopy and applied nano-research

with effective nano-engineering strategies has advanced the spectro-plasmonic modalities in the SPCE platform

with newer applications and processes including, but not limited to: ultra-high sensitivity , CNT-assisted

augmented coupling , cardiovascular disease and food biomarker monitoring , fluorescent polymer brushes

for large angle studies , interfacial molecular beacon-related explorations , cavity-void plasmon coupling in

nano-assemblies sustaining Bragg and Mie plasmons , adsorption-desorption analysis , lightning-rod effect

, graphene π-plasmon hybrid coupling , mesoporous carbon florets for photon cascading in

nanocavity , lower-to-higher aggregates coupling , magneto-plasmonics , PLEDs , simultaneous

multianalyte sensing  and other cost-effective biosensing applications . 

2. Surface Plasmon Coupled Emission (SPCE) Technology

(Snippets) Following the pioneering work by Lakowicz and co-workers, SPCE technology has been implemented in

the advancement of several biosensing platforms . This section provides a brief overview of the SPCE

platform and the associated nanointerfaces. Figure 1 showcases a typical configuration in which the fluorescence

is captured using a cuvette in a conventional fluorescence spectrophotometer. Traditionally, the detectors are
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placed at 90° in order to avoid the direct light from the irradiation source, as well as any other interference .

In this regard, as the detector is placed in a fixed location at one particular angle, the collection efficiency is

drastically lowered as the light emitted is isotropic from the cuvette. Furthermore, conventional fluorescence

spectroscopy has several drawbacks: (i) low signal collection efficiency; (ii) poor resolution of emission peaks; (iii)

lower sensitivity; (iv) requirement of cumbersome equipment; (v) omnidirectional emission property with negligible

recognition of low quantum yield emitters . For the radiating dipoles placed at the glass-water interface,

the emission in the relatively HRI region (glass, n  = 1.52) develops into a partially directional emission (Figure

1b). This is due to the effect of critical angle (θ ), at which the evanescent field is generated at the interface,

presenting an off-normal (non-isotropic) and partially directional and not polarized emission . While these are the

preliminary observations with regard to the emission, as discussed in detail elsewhere , the emission pattern

can be channelized into sharply directional and polarized emissions using SPCE and PCCE platforms (Figure 1d).

Figure 1. Conceptual schematic of (a) fluorescence emission (of RhB) recorded by conventional fluorescence

spectrophotometer, (b) the angular dispersion of fluorescence emission as observed in the water-glass interface.

The angle shown is critical angle (θ ) of emission. Adapted from . (c) Schematic of the spacer, cavity and ext.

cavity nanointerfaces. (d) Optical setup used for SPCE experimental work with reverse Kretschmann (RK)

configuration. The detection system is carried out using the conventional Ocean Optics detector, as well as the

mobile phone-based detection system. Adapted from . (e) Tunable enhancements in the fluorescence

enhancements observed using different nanomaterials and nanohybrids in SPCE platform. (Acronyms: AgTiO  CS:

silver titanium dioxide cryosoret; AgAu: silver-gold nanohybrid; AgCD: silver NP decorated-carbon dots; AgNPrs:

silver nanoprisms; AgNW: silver nanowire; DNA/Ag/CD: DNA based AgCD composite; Nd O : neodymium (III)

oxide; Ag/SLGO: silver NPs decorated on single layer graphene oxide; Ag/lignin: lignin-based AgNPs; Ag/CNT:

carbon nanotubes decorated with AgNPs; AuNS: gold nanostars; Au/SiO : gold NPs decorated on silica NPs; TiCN:

titanium carbonitride; C60: carbon allotrope or buckminsterfullerene, (C60-Ih) [5, 6] fullerene).
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The generally explored nanointerfaces in the SPCE platform are shown in Figure 1c, presenting the spacer, cavity

and extended (ext.) cavity nanointerfaces, and the SPCE platform is schematically shown in Figure 1d 

. The nanointerfaces are often fabricated using the spin-coating methodology, wherein the nanomaterial and the

fluorophores of interest are doped in a polymer matrix and spin coated over the SPCE platform. The SPCE

enhancements depend on several characteristics of the nanomaterials used, and also significantly depend on the

nanointerfaces utilized. In the spacer nanointerface, in principle, the nanomaterial functions as an active spacer

material between the radiating dipoles (fluorescent moieties) and the SPPs of the metallic thin film . In the

cavity nanointerface, the infinitesimal nanogaps generated between the nanomaterial and the metal thin film

sustain plasmonic hotspots where the radiating dipoles are sandwiched . Furthermore, as the name

suggests, the cavity hotspots in the cavity nanointerface are extended to a defined distance in the ext. cavity

interface .

While the spacer and ext. cavity nanointerfaces, as observed in Figure 1c, are constituted by two separate

nanolayers, the cavity nanointerface is a single nanolayer. Consequently, the surface-induced quenching effects

are significantly observed in the cavity nanointerface compared to the other two. By and large, the performance of

these architectural designs has been examined with different nanomaterials and a comprehensive analysis of such

explorations would demand the usage of meta-analysis and associated artificial intelligence and machine learning

tools to comprehend the opto-electronic response of nanomaterials generated from a combination of elements from

different parts of the periodic table . In a typical SPCE experiment, the SPPs are generated by illumination

at an appropriate angle, which can satisfy the phase matching conditions at the metallo-dielectric nanointerface 

. The evanescent field is generated via both the Kretschmann-Raether (KR) and Reverse Kretschmann (RK)

configurations, although the latter is more conducive for large-scale production and incorporation of the SPCE

platform in biosensing approaches . This is on account of the fundamental difference between the two

technologies in terms of the laser excitation and emission collection attributes. While the excitation and emission

are performed from the curved surface of the prism in the KR configuration, the excitation is carried out from the

flat surface of the prism (or from the sample side) in the case of RK optical configuration . In a typical

experiment, the nano-engineered SPCE substrate is affixed over the prism using an index matching fluid, as shown

in Figure 1d. The prism is then mounted on a rotating stage and the emission is collected using appropriate optical

filters and polarizers using an optic fiber. The final detection and the analysis of the SPCE emission signal is

carried out using two detection systems: (i) the exorbitant Ocean Optics detector system; (ii) the cost-effective

smartphone-based detection platform. This departure from conventional detection systems towards hand held

devices has been recently pursued on account of the advantages of the latter in terms of easy transportability,

unparalleled data acquisition ability, superior computing and ever-refining premium quality camera technologies 

.

In order to enhance the sensitivity of the detection devices, different nano-engineering techniques have been

investigated and explored over the SPCE platform using myriad nanomaterials, including metallic nanomaterials

(Ag, Au, Pt, Cu), dielectric nanomaterials (Nd O , SiO , TiO , TiC, TiN, TiCN), ferromagnetic nanomaterials (Fe O ,

Nd O -Ag or NdAg nanohybrids), homometallic and heterometallic, bi-, tri-, tetra-metallic nanohybrids, as well as

graphene Dirac fermions and other 2-dimensional material-sustaining partially propagating plasmons, etc. 
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. The EM field intensity in the spatial regions of nanogaps between the NPs and the metallic

thin film is dependent on several factors, such as the shape (rods, triangles, urchins, spheres, cubes stars, and

wires), size (<10 nm, 10 nm–100 nm, >100 nm), architecture (core-shell, decorated), surface roughness, nature of

adjacently situated plasmonic and/or dielectric NPs as well as the immediate environment and its refractive index

. Extensive theoretical analysis of the utility of such nanomaterials for efficient photo-plasmonic

hotspot generation have been carried out using discrete dipole approximation (DDA) , finite-difference time-

domain (FDTD)  and COMSOL Multiphysics simulations  to obtain a comprehensive understanding

of the hotspot behavior. These explorations have assisted in the realization of new opto-electronic phenomena at

nano-dimensions, such as Casimir force, Rabi splitting, Fabry-Perot photonic mode-coupling, Fano resonance,

quantum confinement and the Purcell effect in the SPCE platform, rendering scientific insights into

physicochemical interactions at advanced interfaces . These research studies have resulted in the

development of intriguing biosensing platforms, thereby supporting translational photonics research in addition to

providing newer insights from the basic (simulations) and applied research perspectives.
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