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Advanced oxidation technology of persulfate is a new method to degrade wastewater. As the economy progresses

and technology develops, increasingly more pollutants produced by the paper industry, printing and dyeing, and the

chemical industry are discharged into water, causing irreversible damage to water. Methods and research

directions of activation persulfate for wastewater degradation by a variety of iron-based catalysts are reviewed.

This entry describes the merits and demerits of advanced oxidation techniques for activated persulfate by iron-

based catalysts. In order to promote the development of related research work, the problems existing in the current

application are analyzed.

iron-based catalysts  activation persulfate  degrading wastewater

 1. MeFe O  (Me = Cu, Co, Zn, etc.)

In terms of activation mechanism, transition metal compounds react with PS to produce a large amount of ·SO ;

the reaction equation follows:

M  + S O  → M  +·SO  + SO

(1)

As can be seen from the above reaction, metal ions are in a free state dispersed in the solution during the reaction

process. Although the wastewater can be degraded by the activation persulfate mechanism, it belongs to

homogeneous catalysis; metal ions will be dissolved in the aqueous solution, which causes difficult separation from

solution. Therefore, the production cost is greatly increased due to its difficult recycling nature, and it is easy to

cause secondary pollution to the environment. Therefore, MeFe O  with a low metal leaching rate has become a

new research direction. Through PS/PMS  heterogeneous catalytic technology, these problems can be effectively

solved .

At present, there are several common methods for preparing iron-based catalysts: hydrothermal, solvothermal,

sol–gel preparation, and coprecipitation methods.

In the hydrothermal method, the solute is dispersed into the solution, stirred, and heated in the reactor, and finally

washed and dried to obtain the required product .
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Similar to the hydrothermal method, the solvothermal method changes water into an organic solvent. By dissolving

one or more precursors in a nonaqueous solvent, the reaction occurs in liquid phase or supercritical conditions .

The sol–gel method is to dissolve the metal alkoxides in organic solvents, form homogeneous solutions, add other

components, react at a certain temperature to form gels, and finally make products by drying .

Coprecipitation is an important method to prepare composite oxide ultrafine powder containing a large variety of

metal elements .

The electron transfer between transition metal oxides is much higher  than that between single transition metal

oxides. Generally, AB O    structure is referred to as spinel structure. CuFe O  is a typical spinel ferrite with a

magnetic structure, which has high chemical stability and low metal leaching rate. Taking CuFe O  as an example,

compared with single transition metal oxides, Fe and Cu elements can play a role in the reaction; respectively, they

can also activate PS to produce ·OH and ·SO .

G. Xian et al.  comprehensively compared the catalytic degradation effects of CoFe O , CuFe O , MnFe O ,

and ZnFe O . In detail, CuFe O  presented the best and fastest catalytic performance in organics removal. Almost

87.6% azo dye acid orange 7 (AO7) was removed in PS solution coupled with CuFe O   . Additionally, it was

known that CuFe O  had the best catalytic effect. Moreover, through the quenching experiment, it was not ·OH but

·SO  that played a major role in the reaction.

Table 1  shows the degradation effects of some different MeFe O -activated PS/PMS on different kinds of

wastewater. It can be seen from the table that the iron-based catalyst with spinel structure mainly acts on ·SO  in

the mechanism of activation persulfate; the effect of ·OH is slightly worse . Of course, there are also some

nonfree radical pathways, which degrade pollutants in water by generating singlet oxygen  O   .

Table 1. Effect of Different MeFe O -activated PMS on degradation of different wastewater .
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Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
ConcentrationOxidant Oxidation

ConcentrationT/minDegradation
Rate/%

Number of
Cycles

Synthesis
Techniques Ref.

PbFe O Thionine O 10 μM 0.4 g/L PMS 400 μM 20 100
Not

mentioned
Solution

combustion

CoFe O –loaded
quartz sand

Sulfachloropyridazine
sodium

·SO
·OH

2 g/L 10 g PMS 75 mg/L 150 90
Not

mentioned
Citrate

combustion

CoFe O -SAC Norfloxacin (NOF)
·SO
·OH

10 mg/L 0.1 g/L PMS 0.15 g/L 120
TOC

reduction
81

5
(>80%)

Hydrothermal

The biochar loaded
with

CoFe O  nanoparticles

Bisphenol A
(BPA)

·SO
·OH

10 mg/L 0.05 g/L PMS 0.5 g/L 8 93
Not

mentioned
Hydrothermal
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2. MeFe O  Combined with the Carrier

The carrier recombination method can increase the specific surface area and increase the contact of chemical sites

, thus greatly improving the rate of chemical reaction. At present, SiO   , black phosphorus , and rGO

 (reduced graphene oxide) are commonly used as carriers. After compositing with the carrier, it is closely

combined with the carrier by van der Waals force  or electrostatic interaction , making it difficult to fall off the

surface of the carrier.

Pure graphene is a benzene-ring-like two-dimensional nanomaterial consisting of sp  hybrid orbitals. However, its

high production cost limits its large-scale application. Afterward, by improving Hummer’s method, a large number of

oxygen-containing functional groups were linked at the edge of the plane by a strong oxidant, hence the name GO

(graphene oxide) (Figure 1); rGO (Figure 2) was obtained by sodium borohydride and other means of reduction,

which has low synthesis cost and is suitable for use as a good carrier of catalysis.

Figure 1. Plane structure (left) and solid structure (right) of GO (bond line type).

Figure 2. Plane structure (left) and solid structure (right) of rGO (bond line type).

Taking CuFe O , a representative of MeFe O , as an example, by comparing the effect of pure CuFe O  with that

of CuFe O  combined with the carrier, it can be seen that the latter has a stronger catalytic effect under acidic and

photoinduced conditions . CuFe O  in CuFe O –rGO is closely combined with the oxygen-containing groups on

Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
ConcentrationOxidant Oxidation

ConcentrationT/minDegradation
Rate/%

Number of
Cycles

Synthesis
Techniques Ref.

C N @MnFe O -
graphene

Metronidazole
·SO
·OH

20 mg/L 1.0 g/L PS 0.01 M 90 94.5
5

(>80%)
Solvothermal

Zn Cu Fe O Atrazine ·SO 4.4 μM 200 mg/L PS 0.5 mM 30 95
Not

mentioned
Sol–gel

CuFe O /O

2,4-
Dichlorophenoxyacetic

acid
(2,4-D)

Not
mentioned

20 mg/L 0.20 g/L
PMS
O

PMS 2.0 mM;
O  16.0 mg/L;

40 88.9
5

(>80%)
Coprecipitation

CoFe O
Atrazine

(ATZ)
·SO 10 mg/L 0.4 g/L PMS 0.8 mM 30 >99

5
(>60%)

Hydrothermal
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rGO through electrostatic interaction, as shown in  Figure 3. Images from a scanning electron microscope are

shown in Figure 4.

Figure 3. Chemical structural formula of CuFe O rGO .

Figure 4. TEM images of (a,b) rGO/CuFe O  nanostructures under different magnifications .

Table 2  shows the degradation effects of some CuFe O   and rGO composite materials on different kinds of

wastewater. It can be seen from the table that the composite catalyst can still produce good effects even without

the presence of PS. Not only the Cu, Fe, and other elements in the catalyst can produce pure chemical catalytic

effect, but the carrier rGO can produce electron transition under the light condition, promoting the transfer of

electrons, and plays a part of the photocatalytic effect . Table 2 contains some other carriers, which can also

greatly influence degradation of different kinds of wastewater.

Table 2. Effects of partial MeFe O  and carrier composite materials on degradation of different kinds of wastewater

.
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@: the composite of two materials.

3. Activation Persulfate by Fe

In recent years, activation persulfate based on Fe   (zero-valent iron, ZVI) have been widely used in chemical

production and environmental remediation . As mentioned above, the activation persulfate/Fe (II) mechanism

can cause secondary pollution to water, so ZVI/PS  is used instead to reduce a series of problems caused by

the reduction of Fe  content due to the change of pH and other factors in water .

ZVI/PS system has strong reducibility (Fe ,E   = −0.44 V) . Compared with CuFe O , its reaction process is

more complex, as shown in Figure 5. Fe  is first converted to Fe  in the presence of acid and oxidant, then further

oxidized to Fe  by Fe , and finally to Fe(IV) . The reaction mechanism follows : According to the reaction

equation, the reaction is easily affected by pH, and the reaction will gradually slow with the increase of pH. Weng et

al.  point out that the Fe /PS system exhibits two-stage kinetics. The kinetic first stage is mostly attributed to a

heterogeneous reaction occurring on the surface of the Fe  aggregate. As the reaction proceeds, decolorization

shifts from the slow kinetic first stage to the fast kinetic second stage when sufficient Fe  ions are maintained in

the system .

Fe  + 2H  → Fe  + H

(2)

2Fe  + O  + 2H O → 2Fe  + 4OH

(3)

Fe  + S O  → Fe  + 2SO

Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
ConcentrationOxidant Oxidation

ConcentrationT/minDegradation
Rate /%

Number of
Cycles

Synthesis
Techniques Ref.

CuFe O -
20%rGO

Methylparaben
SO ·
·OH

10 mg/L 0.2 mg/L PS 5 mM 120 96
Not

mentioned
Sol-gel

CuFe O -
1% (w/w)

rGO
Phenol ·OH 20 ppm 5 mL

30%
H O

6 mg/L 240 100
Not

mentioned
Coprecipitation

CuFe O /g-C N Propranolol SO · 0.02 mM 1 g/L PS 1 mM 120 82.2
Not

mentioned
Sol-gel

CoFe O /CCNF Dimethyl phthalate SO · 0.05 mM 0.5 g/L PMS 1.5 mM 60 >90
5

(>90%)
Sol-gel

TiO @CuFe O /UV 2,4-D SO · 20 mg/L 0.1 g/L PMS 0.3 mM 60 97.2
5

(>90%)
Sol-gel

ZnS-ZnFe O Rhodamine B SO · 20 mg/L 20 mg PS 5 mg 90 97.67
3

(>95%)
Hydrothermal

Fe O @CoFe O NOF
SO ·
·OH

15 μM 0.3 g/L PMS 0.4 mM 25 89.8
4

(90%)
Hydrothermal

Nitrogen and sulfur
codoped CNTs-
COOH loaded

CuFe O

2-
Phenylbenzimidazole-

5-sulfonic acid
SO · 5 mg/L 50 mg/L PMS

1:100 (molar
ratio)

40 98
5

(>95%)
Coprecipitation
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(4)

Fe  + HSO  → Fe  + SO  + OH

(5)

Fe  + S O  → Fe  + SO  + ·SO

(6)

Fe  + HSO  → Fe  + SO  + ·SO

(7)

Fe  + S O  → Fe  + 2·SO  + SO

(8)

Fe +2 HSO  → Fe  + 2OH  + 2·SO

(9)

Fe  + S O  + H O → Fe O  + 2SO  + 2H

(10)

Fe  + HSO  → Fe O  + SO  + H

(11)

Figure 5. Schematic of the formation of ·SO  and Fe(IV) in nZVI/persulfate systems containing methyl phenyl

sulfoxide .
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Figure 6 shows the proposed degradation pathway of 2,4-D . By examining Figure 6, it can further confirm that

macromolecular organic matter is decomposed into small molecular organic matter, which is gradually mineralized.

Figure 6. The proposed degradation pathway of 2,4-D .

Table 3 shows the degradation effects of various types of polluted water bodies activated by PS/PMS based on

elemental iron. Usually, an appropriate amount of H O    will be added to the water when PS is activated by Fe ,

so as to reduce the cost of oxidant. Through the analysis of the table, it can be seen that the effect of ZVI when

used alone  is worse than when it is combined with the carrier or when other conditions exist.

Table 3. Degradation effect of different kinds of wastewater based on PS/PMS activated by different kinds of iron

.
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Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
ConcentrationOxidant Oxidation

ConcentrationT/minDegradation
Rate /%

Number of
Cycles

Synthesis
Techniques Ref.

nZVI Sulfamethazine
·OH

·SO 50 mg/L 2 mM
PS

H O
1 mM

0.5 mM
30 96

Not
mentioned

Sol-gel

CN-Fe Sulfamethazine
·SO
·OH
O

50 μM 0.5 g/L PMS 1 mM 15 82
Not

mentioned
Carbothermal

Carbon-
coated

4-chlorophenol ·SO
·OH

150 μM 0.25 g/L PMS 1 mM 120 96 Not
mentioned

Commercially
available
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−
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@: the composite of two materials.

4. Fe O

Fe O  magnetite, also known as magnetic iron oxide, is a black crystal with a rotating spinel structure (Figure 7).

In magnetite, Fe  and Fe  are disordered on the ferrite octahedron, so electrons can transfer rapidly between

Fe  and Fe ; thus, reversible redox reactions can occur at the same position on the octahedron.

Figure 7. Crystal structure of Fe O .

However, since Fe O  is easy to accumulate in solution and contact sites are reduced after agglomeration, single

Fe O  is rarely used. Using the composite carrier method  can not only solve these problems, but also speeds

the reaction rate, making it more cost effective when applied in industrial production. He et al.  pointed out that

the Fe O /GO/Ag composite microspheres are formed using magnetic Fe O   as cores, followed by coating an

internal layer of GO and an outer layer of Ag nanoparticles, as Figure 8  shows. The synthesized Fe O /GO/Ag

composite catalyst under the action of NaBH , methylene blue, and ciprofloxacin can be completely degraded

within 12 min.  Figure 8  shows SEM images of Fe O /GO/Ag composite catalyst. In  Figure 9, we can clearly

observe that Ag has been completely attached to the Fe O /GO surface, which can increase the specific surface

area and improve the chemical reaction rate.

Catalyst Pollution Main
Mechanism

Pollutant
Concentration

Catalyst
ConcentrationOxidant Oxidation

ConcentrationT/minDegradation
Rate /%

Number of
Cycles

Synthesis
Techniques Ref.

nZVI

US-nZVI Chloramphenicol
·SO
·OH

5 mg/L 0.5 g/L PMS 1 mM 90 98.1
Not

mentioned
Liquid phase

reduction

Fe @Fe O Dibutyl phthalate
·OH

·SO
18 μM 0.5 g L PS 1.8 mM 180 94.7

6
(>68%)

Calcination

Fe @Fe O Atrazine
·OH

·SO
500 μg/L 25 mg/L PMS 1 mM 2 100

Not
mentioned

Reduction

Fe@C Bisphenol S
·OH

·SO
5 mg/L 0.5 g/L PMS 1.0 mM 60 92.8

Not
mentioned

Resin
carbonization

Fe@C/PB
2,4-

DichloroPhenol
·OH

·SO
20 mg/L 0.6 g/L PMS 2.0 g/L 50 99.4

Not
mentioned

Calcination
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Figure 8. Illustration of the fabrication of Fe O /GO/Ag composite microspheres .

Figure 9. Typical FESEM images of (a) Fe O , (b) Fe O /GO, (c) Fe O /GO/Ag, and (d) Fe O /Ag microspheres.

Inserts are magnified FESEM images of Fe O /GO/Ag and Fe O /Ag microspheres .

Table 4  shows the research progress of Fe O   and its composite materials on the degradation of different

pollutants reported at present. According to the data in the table, when Fe O  is compounded with the carrier, the

catalytic performance is greatly improved.
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Table 4.  Effects of Fe O   and its composite-material-activated PS/PMS on degradation of different kinds of

wastewater .

@: the composite of two materials.
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