

Ehrlichiosis in Dogs

Subjects: **Veterinary Sciences**

Contributor: Muhammad Umair Aziz , Sabir Hussain , Baolin Song , Hammad Nayyar Ghauri , Jehan Zeb , Olivier Andre Sparagano

In dogs, ehrlichiosis is caused by three Ehrlichial species, namely *Ehrlichia canis*, *E. ewingii*, and *E. chaffeensis*; however, *E. canis* is the pathogen that most affects platelets, monocytes, and granulocytes. Globally, *Rhipicephalus sanguineus* is mainly responsible for vectoring the Ehrlichia species; however, *Haemaphysalis longicornis* is also involved in vectoring this species in east Asian countries. This disease causes acute, sub-clinical, and chronic clinical complications. There is no preferable age or sex for ehrlichiosis. The disease can be diagnosed by various methods including microscopy, indirect immunofluorescence test (IFAT), and polymerase chain reaction (PCR).

Ehrlichia canis

Ehrlichia chaffeensis

Ehrlichia ewingii

dog

epidemiology

tick borne diseases

1. Introduction

Ehrlichiosis is induced by a group of emerging rickettsial tick-borne pathogens of public importance that are Gram-negative obligate intracellular bacteria of the genus *Ehrlichia*, family Anaplasmataceae [1]. Ehrlichiosis in dogs is a significant vector-borne bacterial ailment spreading worldwide. It is also recognized as canine rickettsiosis, canine typhus, canine hemorrhagic fever, tropical canine pancytopenia, and tracker dog disease [2]. Numerous species of *Ehrlichia* are famous for infecting a wide range of animals. Among them, *E. canis* is the well-known etiological pathogen of canine ehrlichiosis affecting platelets, monocytes, and granulocytes [3][4]. Although *E. chaffeensis* is considered the main etiological agent of human monocytic ehrlichiosis (HME), it is also reported in canines [5]. A minimum of five different species of ticks (*Amblyomma americanum*, *Haemaphysalis longicornis*, *Rhipicephalus sanguineus*, *Haemaphysalis yensi*, and *Dermacentor variabilis*) have been identified as vectors transmitting clinical ehrlichiosis in dogs [6]. These disease-transmitting vectors become more potent during summer and spring seasons [7]. *Rhipicephalus sanguineus* (the brown tick of dogs) is generally considered the main vector responsible for canine ehrlichiosis [8][9]. In recent years, ehrlichiosis has been expanded to new regions which were thought to be disease free, such as northern China, temperate regions of the Indian sub-continent, and central and northern states of the USA [10].

Ticks are considered the second most prevalent hematophagous parasites after mosquitoes. Along with causing anemia, they also act as vectors for the transmission of many protozoan, bacterial, and viral diseases [11][12]. In recent years, ecological variations due to global warming, exponential increase in human population, deforestation,

and frequent transport of pet animals from one continent to another have modified and enhanced the transmission patterns of all vector-borne pathogens around the globe [13]. In south and east Asia, regardless of the suitable climatic conditions for vectors and parasites and huge population of stray and pet dogs, scarce knowledge is available related to diagnosis, epidemiology, prevention, and control strategies associated with ehrlichiosis in dogs. However, with the expansion of a region's economy and inculcation of foreign culture, the responsibilities of veterinarians have increased to devise control strategies about canine tick-borne ailments [14]. In less developed areas of east and south Asia, almost 75 percent of dogs are categorized as stray dogs, which further increases the risk of emergence of new tick-borne parasitic zoonoses [15].

2. Epidemiology

Ehrlichiosis is a disease of global importance, but it is more prevalent in sub-tropical and tropical regions. However, due to the chronic nature of the disease in some cases, accurate geographical distribution cannot be determined. The reason may be due to the fact that the clinical signs appear years after the first inoculation of the pathogen from ticks and after the canine species has traveled to non-endemic countries where this specific ailment might not be included in differential diagnostic lists by clinicians and scientists [16]. On the basis of different diagnostic methods, the prevalence in the south and east Asia ranges from 0.0% (South Korea) to 86.9% (India) [17][18]. The prevalence percentage of all *Ehrlichia* spp. related to canines in different countries of south and east Asia is presented in **Table 1**.

Table 1. Prevalence studies on ehrlichiosis in dogs conducted in south and east Asian countries.

Country/Region	Sample Source	Causative Agent/Species	Diagnostic Method	Prevalence % (Positive/Total Number of Samples)	Reference
South Asia					
Pakistan	Blood	<i>Ehrlichia canis</i>	PCR	28 (42/151)	[19]
Pakistan	Blood	<i>Ehrlichia canis</i>	PCR	24.5 (12/49)	[20]
India	Blood	<i>Ehrlichia canis</i>	PCR	8 (12/150)	[21]
India	Blood	<i>Ehrlichia canis</i>	PCR	8.40 (70/833)	[22]
India	Ticks Blood	<i>Ehrlichia canis</i> <i>Ehrlichia canis</i>	PCR PCR	16.1 16.9	[23]
India	Blood	<i>Ehrlichia canis</i>	PCR	30 (18/60)	[24]
India	Blood	<i>Ehrlichia canis</i>	PCR	41.59 (89/214)	[25]
India	Blood Serum	<i>Ehrlichia</i> sp. <i>Ehrlichia canis</i>	Microscopy ELISA	14.28 (12/84) 86.90 (73/84)	[17]

Country/Region	Sample Source	Causative Agent/Species	Diagnostic Method	Prevalence % (Positive/Total Number of Samples)	Reference
India	Blood Blood	<i>Ehrlichia</i> sp. <i>Ehrlichia canis</i>	Microscopy PCR	19.38 (19/98) 50 (49/98)	[26]
India	Blood	<i>Ehrlichia canis</i>	PCR	0.39 (3/778)	[27]
India	Serum	<i>Ehrlichia canis</i>	ELISA	48.33 (29/60)	[28]
India	Blood	<i>Ehrlichia canis</i>	PCR	20.6	[14]
India	Serum Blood	<i>Ehrlichia canis</i> <i>Ehrlichia canis</i>	ELISA PCR	57.5 (293/510) 8.8 (45/510)	[29]
India	Blood Serum Blood	<i>Ehrlichia canis</i> <i>Ehrlichia canis</i> <i>Ehrlichia canis</i>	Microscopy ELISA PCR	1.33 (3/225) 19.11 (43/225) 5.78 (13/225)	[30]
India	Serum	<i>Ehrlichia canis</i>	ELISA	19 (9/48)	[31]
Nepal	Blood	<i>Ehrlichia canis</i>	PCR	27.14 (19/70)	[32]
Nepal	Blood	<i>Ehrlichia</i> spp.	Microscopy	8 (4/50)	[33]
Bangladesh	Blood	<i>Anaplasma</i> / <i>Ehrlichia</i> spp.	PCR	2.9 (3/68)	[34]
East Asia People's Republic of China (PRC)	Serum	<i>Ehrlichia canis</i>	ELISA	1.29 (4/309)	[35]
PRC	Blood Blood	<i>Ehrlichia canis</i> <i>Ehrlichia canis</i>	PCR PCR	12.12 (36/297) 15.23 (108/709)	[36]
PRC	Blood Ticks	<i>Ehrlichia canis</i> <i>Ehrlichia canis</i>	PCR PCR	1.4 (15/1114) 4.1 (6/146)	[37]
PRC	Ticks Serum	<i>Ehrlichia canis</i> <i>Ehrlichia canis</i> <i>Ehrlichia canis</i> <i>Ehrlichia canis</i>	PCR PCR PCR ELISA	11.03 (50/453) 3.29 (3/91) 13.69 (10/73) 1.33 (7/526)	[38]
PRC	Serum	<i>Ehrlichia canis</i>	SNAP test (EISA)	2.17 (13/600)	[39]
PRC	Ticks	<i>Ehrlichia canis</i>	PCR	0.97 (3/308)	[40]
PRC	Ticks	<i>Ehrlichia</i> spp. (<i>E.canis</i> and <i>E.muris</i> like)	PCR	28.7 (24/849)	[41]

Country/Region	Sample Source	Causative Agent/Species	Diagnostic Method	Prevalence % (Positive/Total Number of Samples)	Reference
PRC	Blood	<i>Ehrlichia canis</i>	ELISA	1.9%	[42]
PRC	Blood	<i>Ehrlichia canis</i>	PCR	0.0 (0/162)	[43]
Japan	Serum	<i>Ehrlichia canis</i> <i>Ehrlichia chaffeensis</i> <i>Ehrlichia muris</i>	IFA IFA IFA	18 (27/150) 18.7 (28/150) 11.3 (17/150)	[44]
Japan	Ticks	<i>Ehrlichia platys</i>	PCR	9.4 (3/32)	[45]
Japan	Blood	<i>Ehrlichia platys</i>	PCR	1.5 (1/67) Yamaguchi 27.6 (24/87) Okinawa	[45]
Japan	Serum	<i>Ehrlichia muris</i>	IFA	3.6 (18/499)	[46]
Japan	Blood	<i>Ehrlichia</i> spp./ <i>Anaplasma</i> spp.	PCR	1.5 (11/722)	[47]
Japan	Blood	<i>Ehrlichia canis</i>	PCR+ Electron Microscopy	100 (1/1)	[48]
Japan	Ticks	<i>Ehrlichia</i> spp	PCR	0.25 (3/1211)	[49]
Japan	Ticks	<i>Ehrlichia canis</i>	PCR	0.0 (0/1211)	[49]
South Korea	Serum Blood	<i>Ehrlichia canis</i> <i>Ehrlichia canis</i>	SNAP test (ELISA) PCR	4.7 (25/532) 0.0 (0/25)	[50]
South Korea	Serum	<i>Ehrlichia</i> spp. (<i>E. canis</i> / <i>E. ewingii</i>) <i>Ehrlichia chaffeensis</i>	ELISA/IFA ELISA/IFA	10.3 (228/2215) 2.3 (52/2215)	[51]
South Korea	Serum Serum Blood	<i>Ehrlichia canis</i> <i>Ehrlichia canis</i> <i>Ehrlichia canis</i>	ELISA IFA PCR	0.6 (1/182) 22.5 (41/182) 0.0 (0/182)	[52]
South Korea	Blood	<i>Ehrlichia canis</i>	ELISA	6.1 (14/229) Rural dogs 0.0 (0/692) Urban dogs	[53]
South Korea	Serum	<i>Ehrlichia</i> spp	ELISA	7.56 (22/291)	[54]

Country/Region	Sample Source	Causative Agent/Species	Diagnostic Method	Prevalence % (Positive/Total Number of Samples)	Reference
	Blood	<i>Ehrlichia chaffeensis</i>	PCR	3.09 (9/291)	
South Korea	Blood	<i>Ehrlichia chaffeensis</i>	PCR	100 (2/2)	[5]
South Korea	Ticks	<i>Ehrlichia chaffeensis</i>	PCR	4.2% (26/611)	[51]
South Korea [60][61]	Blood	<i>Ehrlichia canis</i>	(ELISA)	12.3 (29/236)	[55]
South Korea	Ticks	<i>Ehrlichia canis</i> [60][61][62]	PCR	0.0 (0/1110)	[18]
ROC Taiwan	Blood	<i>Ehrlichia canis</i>	ELISA	2 (2/101)	[56]
ROC Taiwan	Blood	<i>Ehrlichia canis</i>	ELISA	1.5	[42]
ROC Taiwan [44][64]	Blood	<i>Ehrlichia canis</i>	ELISA	9.9 (34/344)	[57]
ROC Taiwan	Blood	<i>Ehrlichia canis</i>	ELISA	11.4 (20/175)	[58]
	Blood	<i>Ehrlichia canis</i>	PCR	8.6 (15/175)	
	Ticks	<i>Ehrlichia canis</i>	PCR	1 (3/306)	
Hong Kong SAR, China [65]	Blood	<i>Ehrlichia canis</i>	PCR	8 (8/100) stray 6 (6/100) Pet	[59]

RISK [66]. Ticks spreading the disease are mentioned in TABLE 2.

Table 2. Reported tick species carrying ehrlichiosis in south and east Asian countries/regions.

Country/Region.	Tick Vector	Reference
India	<i>Rhipicephalus sanguineus</i> , <i>Rhipicephalus haemaphysaloides</i>	[23]
People's Republic of China (PRC)	<i>Rhipicephalus sanguineus</i> <i>Haemaphysalis longicornis</i> , <i>Rhipicephalus haemaphysaloides</i> <i>Haemaphysalis bispinosa</i>	[37][38][40][41]
Japan	<i>Rhipicephalus sanguineus</i> <i>Haemaphysalis flava</i>	[67][68]
South Korea	<i>Haemaphysalis longicornis</i> <i>Ixodes nipponensis</i>	[18][51]
ROC Taiwan	<i>Haemaphysalis hystricis</i> <i>Haemaphysalis longicornis</i>	[58]

4. Transmission Cycle

Brown dog tick (*Rhipicephalus sanguineus*) carries the pathogen from infected dog through blood meal during the acute phase of disease. After the blood meal, *E. canis* resides in the salivary glands and midgut of the carrier tick and it then spreads the pathogen to another healthy dog via its salivary glands during subsequent feeding [69]. Transstadial transmission is well-established for this pathogen in which the larval stage of tick becomes infected with *E. canis*, which can pass the bacteria to the next two stages (nymph and adult) and spread the pathogen during blood meals [70][71]. It has been observed that brown dog tick starts transferring the rickettsial pathogens within three hours of its attachment to a host [71]. If the *Rhipicephalus sanguineus* is transferred to a cold or temperate climate, due to the shifting of hosts, it can still remain active under such man-made protected kennel environments [72][73]. Moreover, enclosures of wild animals, abandoned houses, and kennel environments provide a perfect atmosphere for its reproduction. Under these suitable environmental conditions, only a single female tick was enough to infect and reproduce many subadults [74]. During the chronic or subclinical phase of the disease, the dog seems healthy but still acts as a carrier for this rickettsial pathogen. The only tick that becomes engorged during the acute phase can infect another healthy host. Moreover, this tick can spread the bacteria even after 155 days of its detachment [75]. Many studies have suggested that transovarial spread of the pathogen also occurs in Ixodid ticks and they maintain the bacteria through many generations in nature [76][77]. However, in a recent study, no proof of transovarial spread was found [78].

5. Pathogenicity

Unlike many Gram-negative bacterial pathogens, peptidoglycan and lipopolysaccharide are absent in the cell wall of this bacterium which may help the bacteria in resisting the host's immune response. The cell wall of *E. canis* becomes very flexible due to the absence of these two materials, which in turn facilitates the pathogen in avoiding antibody attack from its host immune system. Other characteristic feature of this rickettsial organism is the lack of complex inner structures, which permits the production of sugars. The main energy source of this bacterium are amino acids [79]. The incubation period of *Ehrlichia* ranges from 8–20 days. This period is sequentially followed by subclinical, acute, or in some cases chronic form.

Pilli are absent in *Ehrlichia* so the outer membrane of this infectious agent helps in the attachment with the host cell. Once the pathogen enters the host cell and starts infection, it forms membrane-bound partitions (endosomes) and maintains its distinctive cytoplasmic shape. The main target of *E. canis* are mononuclear phagocytic cells. Monocytes are the most common cells to be infected both in canine and human hosts. In addition, *Ehrlichia* also attacks the other immune cells such as metamyelocytes, lymphocytes, and promyelocytes. In general, it is assumed that inside the cells only mononuclear phagocytic cells are able to uphold the productive pathogen [80]. On average, a single infected monocyte contains one to two morulae. The endosomal membrane formed by *Ehrlichia* protects the pathogen from the host and it multiplies within this apartment. The exact mechanism of their survival is still unclear but consequently, the pathogen may survive by modulating the host defense system [81]. In one study, researchers identified two paralogous proteins responsible for immune evasion, which may be due to the presence of poly (G-C) tracts in one of the proteins, suggesting that they have a role in facilitating chronic persistent infections and can help in phase deviation [79].

After infecting the monocytes, *E. canis* spreads to the whole lymphatic system including the liver and spleen, where it triggers the abnormal fast growth of cells and the increased size of these organs, described as hyperplasia. Further cell division and replication leads to bacteremia and eventually results in hemolysis. At this stage, severe clinical manifestations, such as high fever, anemia, and thrombocytopenia, can be observed [44]. Dogs suffering from persistent infection develop a more lethal form of chronic disease where the pathogen attacks the bone marrow and destroys the immune system. As a result, other opportunistic infectious agents further aggravate the situation. Severe thrombocytopenia leads to massive hemorrhages and death [79].

6. Clinical Signs

Clinical presentation due to ehrlichial infection can be varied and depends on many factors, such as the status of the immune system of the dog, virulence of the strain, and existence of co-infections with other tick/flea-borne diseases. Among all other members of the Anaplasmataceae family, *E. canis* appears to cause more intense clinical abnormalities [82][83][84]. In dogs, three ehrlichial species, namely *E. canis*, *E. ewingii*, and *E. chaffeensis*, can cause clinical disease [1][3]. The principal host cell targets for *E. canis* and *E. chaffeensis* are agranulocytes, while *E. ewingii* mainly targets the granulocytic white blood cells [2]. These pathogens can induce both clinical and subclinical complications. Clinical signs induced by ehrlichial species are often non-specific and overlapping. The disease can be acute or mild; however, in many cases, the animal becomes a carrier for an extended period of time without presenting any clinical manifestations. Typically, the incubation period for all ehrlichial species ranges from one to three weeks, and results in three possible disease presentations which may be categorized as acute, chronic, and subclinical [85]. The acute phase may last for 2 to 4 weeks and if the animal survives, the signs vanish even without chemotherapeutic treatment. However, some dogs become subclinical carriers after improvement and may become an important source of infection for months and years. In this phase, the animal apparently looks normal and healthy and does not present any clinically visible signs but upon hematological testing, mild thrombocytopenia can be detected [86]. Not all but some subclinically infected dogs may proceed to the chronic stage, which is the most fatal form of the disease, and which cannot be differentiated from the acute phase in clinical settings because most of the clinical manifestations are non-specific. The chronic form is also known as the myelosuppressive form in which it is difficult to distinguish it from acute bone marrow aspiration and complete blood count tests are necessary. Alternatively, hypoplasia of bone marrow and severe pancytopenia will confirm the presence of the chronic phase [87]. The possible factors that cause some dogs to enter the chronic phase are still unclear.

In naturally infected dogs, the common clinical findings are fever, pale mucosa due to anemia, lymphadenomegaly, bleeding disorders, hepatomegaly, lethargy, petechial and ecchymotic hemorrhages, vasculitis, and extended bleeding period during estrus [88][89][90]. Other less common signs of ehrlichiosis have also been defined and include diarrhea, exercise intolerance, neonatal death or abortion, vomiting, and mucopurulent or serous nasal and ocular discharge. Some old studies have mentioned polyarthritis and lameness as a sign of canine ehrlichiosis [91], but it is believed that this manifestation only appears in cases of co-infections. On physical examination, you may observe tick infestation particularly during the acute phase. In addition, other signs like ataxia, vestibular

dysfunction and seizures, and chronic or myelosuppressive form also reveal stomatitis, scrotal or hind limb edema, jaundice, glossitis, and pyoderma [92]. Bleeding tendencies are also more frequent and severe in the chronic form of CME [90].

7. Clinical Pathology

Hematological abnormalities are variable and overlapping. However, severe drop in platelet count or thrombocytopenia is the principal abnormality observed in canine ehrlichiosis. This hematological finding is consistent in almost 80% of the animals, irrespective of the stage of the ailment. However, normal platelet count may not be the only reason to rule out ehrlichiosis [93][94]. In a retrospective study, decreases in total red blood cell count, pack cell volume (PCV), and platelet count while noticeable increases in basophil count were observed. Moreover, blood urea nitrogen (BUN) and creatinine levels were more elevated than normal [95]. Anemia is mostly non-regenerative along with lymphopenia, monocytosis, thrombocytopenia, hyperproteinemia, hypergammaglobulinemia, hypoalbuminemia, and hyperglobulinemia, which are some additional irregularities [96][97][98]. Values of neutrophils are inconsistent and both neutrophilia and neutropenia have been detected based on the phase of the severity. In the chronic form, aplastic pancytopenia, granular lymphocytosis, mild elevation in liver enzymes, and renal azotemia were found. In regions where this disease is endemic, CME should be the top differential in dogs having persistent lymphocytosis [99][100].

Histopathological and gross abnormalities in experimentally infected dogs include edema of the subcutaneous layer, ascites, anemia, jaundice, and emaciation. Cuffing of the lymphatic fluid in the cerebellum and brain is occasionally seen. Lungs of infected animals display vasculitis and interstitial pneumonia. Additionally, a flabby heart and whole heart dilatation can also be found. Grossly, the most frequent signs include apparent splenomegaly, multifocal lymph node necrosis, and widespread lymadenopathy [101].

References

1. Jafarbekloo, A.; Bakhshi, H.; Faghihi, F.; Telmadarrai, Z. Molecular Detection of *Anaplasma* and *Ehrlichia* Infection in Ticks in Borderline of Iran-Afghanistan. *J. Biomed. Sci. Eng.* 2014, 7, 919–926.
2. Beall, M.J.; Alleman, A.R.; Breitschwerdt, E.B.; Cohn, L.A.; Couto, C.G.; Dryden, M.W.; Guptill, L.C.; Iazbik, C.; Kania, S.A.; Lathan, P.; et al. Seroprevalence of *Ehrlichia Canis*, *Ehrlichia Chaffeensis* and *Ehrlichia Ewingii* in Dogs in North America. *Parasit Vectors* 2012, 5, 29.
3. Stiles, J. Canine Rickettsial Infections. *Vet. Clin. N. Am.-Small Anim. Pract.* 2000, 30, 1135–1149.
4. Lorsirigool, A.; Pumipuntu, N. A Retrospective Study of Dogs Infected with *Ehrlichia Canis* from 2017–2019 in the Thonburi Area of Bangkok Province, Thailand. *Int. J. Vet. Sci.* 2020, 9, 578–580.

5. Yu, D.H.; Li, Y.H.; Yoon, J.S.; Lee, J.H.; Lee, M.J.; Yu, I.J.; Chae, J.S.; Park, J.H. *Ehrlichia Chaffeensis* Infection in Dogs in South Korea. *Vector-Borne Zoonotic Dis.* 2008, 8, 355–357.
6. Keith, C.; Fuqua, C.; Lively, C.; Wade, M.J. Microbial Community Ecology of Tick-Borne Human Pathogens. In *Disease Ecology: Community Structure and Pathogen Dynamics*; Oxford University Press: Oxford, UK, 2007.
7. Neer, T.M.; Harrus, S. Canine monocytotropic ehrlichiosis and neorickettsiosis. *E. Canis E. Chaffeensis* E. *Rumin. N. Sennetsu* 2006, 203–216.
8. Groves, M.G.; Dennis, G.L.; Amyx, H.L.; Huxsoll, D.L. Transmission of *Ehrlichia Canis* to Dogs by Ticks (*Rhipicephalus Sanguineus*). *Am. J. Vet. Res.* 1975, 36, 937–940.
9. Aguiar, D.M.; Cavalcante, G.T.; Pinter, A.; Gennari, S.M.; Camargo, L.M.A.; Labruna, M.B. Prevalence of *Ehrlichia Canis* (Rickettsiales: Anaplasmataceae) in Dogs and *Rhipicephalus Sanguineus* (Acari: Ixodidae) Ticks from Brazil. *J. Med. Entomol.* 2007, 44, 126–132.
10. Sainz, Á.; Roura, X.; Miró, G.; Estrada-Peña, A.; Kohn, B.; Harrus, S.; Solano-Gallego, L. Guideline for Veterinary Practitioners on Canine Ehrlichiosis and Anaplasmosis in Europe. *Parasites Vectors* 2015, 8, 75.
11. de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as Vectors of Pathogens That Cause Disease in Humans and Animals. *Front. Biosci.* 2008, 13, 6938–6946.
12. Otranto, D.; Dantas-Torres, F.; Giannelli, A.; Latrofa, M.; Cascio, A.; Cazzin, S.; Ravagnan, S.; Montarsi, F.; Zanzani, S.; Manfredi, M.; et al. Ticks Infesting Humans in Italy and Associated Pathogens. *Parasites Vectors* 2014, 7, 328.
13. Dantas-Torres, F. Climate Change, Biodiversity, Ticks and Tick-Borne Diseases: The Butterfly Effect. *Int. J. Parasitol. Parasites Wildl.* 2015, 4, 452–461.
14. Megat Abd Rani, P.A.; Irwin, P.J.; Gatne, M.; Coleman, G.T.; Traub, R.J. Canine Vector-Borne Diseases in India: A Review of the Literature and Identification of Existing Knowledge Gaps. *Parasites Vectors* 2010, 3, 28.
15. Traub, R.J.; Irwin, P.; Dantas-Torres, F.; Tort, G.P.; Labarthe, N.V.; Inpankaew, T.; Gatne, M.; Linh, B.K.; Schwan, V.; Watanabe, M. Toward the Formation of a Companion Animal Parasite Council for the Tropics (CAPCT). *Parasites Vectors* 2015, 8, 1–5.
16. Neer, T.M. *Canine Monocytic and Granulocytic Ehrlichiosis*, 2nd ed.; WB Saunders: Philadelphia, PA, USA, 1998; pp. 139–147.
17. Kottadamane, M.R.; Dhaliwal, P.S.; das Singla, L.; Bansal, B.K.; Uppal, S.K. Clinical and Hematobiochemical Response in Canine Monocytic Ehrlichiosis Seropositive Dogs of Punjab. *Vet. World* 2017, 10, 255–261.

18. Truong, A.-T.; Noh, J.; Park, Y.; Seo, H.-J.; Kim, K.-H.; Min, S.; Lim, J.; Yoo, M.-S.; Kim, H.-C.; Klein, T.A. Molecular Detection and Phylogeny of Tick-Borne Pathogens in Ticks Collected from Dogs in the Republic of Korea. *Pathogens* 2021, 10, 613.
19. Malik, M.I.; Qamar, M.; Ain, Q.; Hussain, M.F.; Dahmani, M.; Ayaz, M.; Mahmood, A.K.; Davoust, B.; Shaikh, R.S.; Iqbal, F. Molecular Detection of *Ehrlichia Canis* in Dogs from Three Districts in Punjab (Pakistan). *Vet. Med. Sci.* 2018, 4, 126–132.
20. Iatta, R.; Sazmand, A.; Nguyen, V.L.; Nemati, F.; Ayaz, M.M.; Bahiraei, Z.; Zafari, S.; Giannico, A.; Greco, G.; Dantas-Torres, F.; et al. Vector-Borne Pathogens in Dogs of Different Regions of Iran and Pakistan. *Parasitol. Res.* 2021, 120, 4219–4228.
21. Kalaivanan, M.; Saravanan, S.; Palanivel, K.M.; Ponnudurai, G.; Veterinary, T.N. Identification of *ehrlichia canis* by pcr with phylogenetic analysis in dogs from south india. *Haryana Vet.* 2020, 59, 79–82.
22. Behera, S.K.; Dimri, U.; Banerjee, P.; Garg, R.; Dandapat, S.; Sharma, B. Molecular Detection and Assessment of Hemato-Biochemistry, Oxidant/Antioxidant Status in Natural Canine Monocytic Ehrlichiosis Cases from Northern India. *Proc. Natl. Acad. Sci. India Sect. B-Biol. Sci.* 2017, 87, 361–368.
23. Manoj, R.R.S.; Iatta, R.; Latrofa, M.S.; Capozzi, L.; Raman, M.; Colella, V.; Otranto, D. Canine Vector-Borne Pathogens from Dogs and Ticks from Tamil Nadu, India. *Acta Trop.* 2020, 203, 105308.
24. Bai, L.; Goel, P.; Jhambh, R.; Kumar, P.; Joshi, V.G. Molecular Prevalence and Haemato-Biochemical Profile of Canine Monocytic Ehrlichiosis in Dogs in and around Hisar, Haryana, India. *J. Parasit. Dis.* 2017, 41, 647–654.
25. Milanjeet; Singh, H.; Singh, N.K.; Singh, N.D.; Singh, C.; Rath, S.S. Molecular Prevalence and Risk Factors for the Occurrence of Canine Monocytic Ehrlichiosis. *Vet. Med. (Praha)* 2014, 59, 129–136.
26. Lakshmanan, B.; John, L.; Gomathinayagam, S.; Dhinakarraj, G. Molecular Detection of *Ehrlichia Canis* from Blood of Naturally Infected Dogs in India. *Vet. Arh.* 2007, 77, 307–312.
27. das Singla, L.; Sumbria, D.; Mandhotra, A.; Bal, M.S.; Kaur, P. Critical Analysis of Vector-Borne Infections in Dogs: *Babesia Vogeli*, *Babesia Gibsoni*, *Ehrlichia Canis* and *Hepatozoon Canis* in Punjab, India. *Acta Parasitol.* 2016, 61, 697–706.
28. Singla, L.D.; Singh, H.; Kaur, P.; Singh, N.D.; Singh, N.K.; Juyal, P.D. Serodetection of *Ehrlichia Canis* Infection in Dogs from Ludhiana District of Punjab, India. *J. Parasit. Dis.* 2011, 35, 195–198.
29. Kukreti, K.; Das, M.K.; Rastogi, A.K.; Dubey, R.; Pandey, L.K.; Sharma, P. Prevalence of Canine Monocytic Ehrlichiosis in Canine Population across India. *Arch. Razi Inst.* 2018, 73, 87–93.

30. Mittal, M.; Kundu, K.; Chakravarti, S.; Mohapatra, J.K.; Nehra, K.; Sinha, V.K.; Sanjeeth, B.S.; Churamani, C.P.; Kumar, A. Canine Monocytic Ehrlichiosis among Working Dogs of Organised Kennels in India: A Comprehensive Analyses of Clinico-Pathology, Serological and Molecular Epidemiological Approach. *Prev. Vet. Med.* 2017, 147, 26–33.

31. Wise, A.E.; Tarlinton, R.E. Seroprevalence of Vectorborne Diseases in Free-Roaming Dogs in Goa, India. *Vet. Rec.* 2012, 170, 76.

32. Díaz-Regañón, D.; Agulla, B.; Piya, B.; Fernández-Ruiz, N.; Villaescusa, A.; García-Sancho, M.; Rodríguez-Franco, F.; Sainz, Á. Stray Dogs in Nepal Have High Prevalence of Vector-Borne Pathogens: A Molecular Survey. *Parasites Vectors* 2020, 13, 1–8.

33. Phuyal, S.; Jha, V.C.; Subedi, M. Prevalence of Blood Parasites in Dogs of Kathmandu Valley. Nepal. *Vet. J.* 2017, 34, 107–112.

34. Talukder, B.M.H.; Matsuu, A.; Iguchi, A.; Roy, B.C.; Nishii, N.; Hikasa, Y. PCR-Based Survey of Vector-Borne Pathogens in Dogs In. *J. Bangladesh. Agril. Univ.* 2012, 10, 249–253.

35. Luo, H.; Lan, Y.; Gan, P.; Zhou, W.; Wang, M.; Hu, B.; Zhang, Z.; Bai, Y.; Li, K. Molecular Identification and Prevalence of *Ehrlichia Canis* and *Rhipicephalus Sanguineus* (Acari: Ixodidae) Infecting Pet Dogs in Wenzhou, China. *Pak. J. Zool.* 2021, 53, 2129.

36. Mengfan, Q.; Lixia, W.; Ying, L.; Yan, R.; Kuojun, C.; Jinsheng, Z.; Zaichao, Z.; Weiwei, Y.; Yelong, P.; Xuepeng, C.; et al. Molecular Detection and Genetic Variability of *Ehrlichia Canis* in Pet Dogs in Xinjiang, China. *Vet. World* 2020, 13, 916–922.

37. Xu, D.; Zhang, J.; Shi, Z.; Song, C.; Zheng, X.; Zhang, Y.; Hao, Y.; Dong, H.; Wei, L.; El-Mahallawy, H.S.; et al. Molecular Detection of Vector-Borne Agents in Dogs from Ten Provinces of China. *Parasites Vectors* 2015, 8, 1–7.

38. Zhang, J.; Liu, Q.; Wang, D.; Li, W.; Beugnet, F.; Zhou, J. Epidemiological Survey of Ticks and Tick-Borne Pathogens in Pet Dogs in South-Eastern China. *Parasite* 2017, 24, 35.

39. Xia, Z.; Yu, D.; Mao, J.; Zhang, Z.; Yu, J. The Occurrence of *Dirofilaria Immitis*, *Borrelia Burgdorferi*, *Ehrlichia Canis* and *Anaplasma Phagocytophium* in Dogs in China. *J. Helminthol.* 2012, 86, 185–189.

40. Chen, Z.; Liu, Q.; Liu, J.Q.; Xu, B.L.; Lv, S.; Xia, S.; Zhou, X.N. Tick-Borne Pathogens and Associated Co-Infections in Ticks Collected from Domestic Animals in Central China. *Parasites Vectors* 2014, 7, 1–8.

41. Yu, P.F.; Niu, Q.L.; Liu, Z.J.; Yang, J.F.; Chen, Z.; Guan, G.Q.; Liu, G.Y.; Luo, J.X.; Yin, H. Molecular Epidemiological Surveillance to Assess Emergence and Re-Emergence of Tick-Borne Infections in Tick Samples from China Evaluated by Nested PCRs. *Acta Trop.* 2016, 158, 181–188.

42. Colella, V.; Nguyen, V.L.; Tan, D.Y.; Lu, N.; Fang, F.; Zhijuan, Y.; Wang, J.; Liu, X.; Chen, X.; Dong, J.; et al. Zoonotic Vectorborne Pathogens and Ectoparasites of Dogs and Cats in Eastern and Southeast Asia. *Emerg. Infect. Dis.* 2020, 26, 1221–1233.

43. Zheng, W.; Liu, M.; Moumouni, P.F.A.; Liu, X.; Efstratiou, A.; Liu, Z.; Liu, Y.; Tao, H.; Guo, H.; Wang, G.; et al. First Molecular Detection of Tick-Borne Pathogens in Dogs from Jiangxi, China. *J. Vet. Med. Sci.* 2017, 79, 248–254.

44. Watanabe, M.; Okuda, M.; Tsuji, M.; Inokuma, H. Seroepidemiological Study of Canine Ehrlichial Infections in Yamaguchi Prefecture and Surrounding Areas of Japan. *Vet. Parasitol.* 2004, 124, 101–107.

45. Kawahara, M.; Ito, T.; Suto, C.; Shibata, S.; Rikihisa, Y.; Hata, K.; Hirai, K. Comparison of Ehrlichia Muris Strains Isolated from Wild Mice and Ticks and Serologic Survey of Humans and Animals with E. Muris as Antigen. *J. Clin. Microbiol.* 1999, 37, 1123–1129.

46. Kubo, S.; Tateno, M.; Ichikawa, Y.; Endo, Y. A Molecular Epidemiological Survey of Babesia, Hepatozoon, Ehrlichia and Anaplasma Infections of Dogs in Japan. *J. Vet. Med. Sci.* 2015, 77, 1275–1279.

47. Suto, Y.; Suto, A.; Inokuma, H.; Obayashi, H.; Hayashi, T. First Ehrlichia Infection. *Vetrecord* 2001, 148, 809–812.

48. Inokuma, H.; Beppu, T.; Okuda, M.; Shimada, Y.; Sakata, Y. Epidemiological Survey of Anaplasma Platys and Ehrlichia Canis Using Ticks Collected from Dogs in Japan. *Vet. Parasitol.* 2003, 115, 343–348.

49. Suh, G.H.; Ahn, K.S.; Ahn, J.H.; Kim, H.J.; Leutenegger, C.; Shin, S.S. Serological and Molecular Prevalence of Canine Vector-Borne Diseases (CVBDs) in Korea. *Parasites Vectors* 2017, 10, 1–8.

50. Lee, S.O.; Na, D.K.; Kim, C.M.; Li, Y.H.; Cho, Y.H.; Park, J.H.; Lee, J.H.; Eo, S.K.; Klein, T.A.; Chae, J.S. Identification and Prevalence of Ehrlichia Chaffeensis Infection in Haemaphysalis Longicornis Ticks from Korea by PCR, Sequencing and Phylogenetic Analysis Based on 16S rRNA Gene. *J. Vet. Sci.* 2005, 6, 151–155.

51. Bell, D.R.; Berghaus, R.D.; Patel, S.; Beavers, S.; Fernandez, I.; Sanchez, S. Seroprevalence of Tick-Borne Infections in Military Working Dogs in the Republic of Korea. *Vector Borne Zoonotic Dis.* 2012, 12, 1023–1030.

52. Lim, S.; Irwin, P.J.; Lee, S.; Oh, M.; Ahn, K.; Myung, B.; Shin, S. Comparison of Selected Canine Vector-Borne Diseases between Urban Animal Shelter and Rural Hunting Dogs in Korea. *Parasites Vectors* 2010, 3, 3–7.

53. Hwang, C.Y.; Seo, S.H.; Kang, J.G.; Youn, H.Y.; seok Chae, J. Ehrlichia and Borrelia Spp. Infection in German Shepherd Dogs in Korea. *J. Vet. Clin.* 2011, 28, 204–210.

54. Lee, S.-E.; Song, K.-H.; Lee, S.-H. Survey of *Ehrlichia Canis* and *Borrelia Burgdorferi* Antibodies in Dogs (German Shepherd) Reared in Korea. *Korean J. Vet. Res.* 2007, 47, 281–283.

55. Wu, T.; Sun, H.; Wu, Y.; Huang, H. Prevalence and Risk Factors of Canine Ticks and Tick-Borne Diseases in Taipei, Taiwan. *J. Vet. Clin. Sci.* 2008, 2, 75–78.

56. Yuasa, Y.; Tsai, Y.L.; Chang, C.C.; Hsu, T.H.; Chou, C.C. The Prevalence of *Anaplasma Platys* and a Potential Novel *Anaplasma* Species Exceed That of *Ehrlichia Canis* in Asymptomatic Dogs and *Rhipicephalus Sanguineus* in Taiwan. *J. Vet. Med. Sci.* 2017, 79, 1494–1502.

57. Yuasa, Y.; Hsu, T.H.; Chou, C.C.; Huang, C.C.; Huang, W.C.; Chang, C.C. The Comparison of Spatial Variation and Risk Factors between Mosquito-Borne and Tick-Borne Diseases: Seroepidemiology of *Ehrlichia Canis*, *Anaplasma* Species, and *Dirofilaria Immitis* in Dogs. *Comp. Immunol. Microbiol. Infect. Dis.* 2012, 35, 599–606.

58. Wong, S.S.Y.; Teng, J.L.L.; Poon, R.W.S.; Choi, G.K.Y.; Chan, K.H.; Yeung, M.L.; Hui, J.J.Y.; Yuen, K.Y. Comparative Evaluation of a Point-of-Care Immunochromatographic Test SNAP 4DX with Molecular Detection Tests for Vector-Borne Canine Pathogens in Hong Kong. *Vector-Borne Zoonotic Dis.* 2011, 11, 1269–1277.

59. Little, S.E. Ehrlichiosis and Anaplasmosis in Dogs and Cats. *Vet. Clin. N. Am.-Small Anim. Pract.* 2010, 40, 1121–1140.

60. Harris, S.; Kass, P.H.; Klement, E.; Waner, T. Canine Monocytic Ehrlichiosis: A Retrospective Study of 100 Cases, and an Epidemiological Investigation of Prognostic Indicators for the Disease. *Vet. Rec.* 1997, 141, 360–363.

61. Costa, L.M.; Rembeck, K.; Ribeiro, M.F.B.; Beelitz, P.; Pfister, K.; Passos, L.M.F. Sero-Prevalence and Risk Indicators for Canine Ehrlichiosis in Three Rural Areas of Brazil. *Vet. J.* 2007, 174, 673–676.

62. Rodriguez-Vivas, R.I.; Albornoz, R.E.F.; Bolio, G.M.E. *Ehrlichia Canis* in Dogs in Yucatan, Mexico: Seroprevalence, Prevalence of Infection and Associated Factors. *Vet. Parasitol.* 2005, 127, 75–79.

63. Selim, A.; Alanazi, A.D.; Sazmand, A.; Otranto, D. Seroprevalence and Associated Risk Factors for Vector-Borne Pathogens in Dogs from Egypt. *Parasites Vectors* 2021, 14, 175.

64. Angelou, A.; Gelasakis, A.I.; Verde, N.; Pantchev, N.; Schaper, R.; Chandrashekhar, R.; Papadopoulos, E. Prevalence and Risk Factors for Selected Canine Vector-Borne Diseases in Greece. *Parasites Vectors* 2019, 12, 283.

65. Bowman, D.; Little, S.E.; Lorentzen, L.; Shields, J.; Sullivan, M.P.; Carlin, E.P. Prevalence and Geographic Distribution of *Dirofilaria Immitis*, *Borrelia Burgdorferi*, *Ehrlichia Canis*, and *Anaplasma Phagocytophylum* in Dogs in the United States: Results of a National Clinic-Based Serologic Survey. *Vet. Parasitol.* 2009, 160, 138–148.

66. Moraes-Filho, J.; Krawczak, F.S.; Costa, F.B.; Soares, J.F.; Labruna, M.B. Comparative Evaluation of the Vector Competence of Four South American Populations of the *Rhipicephalus Sanguineus* Group for the Bacterium *Ehrlichia Canis*, the Agent of Canine Monocytic Ehrlichiosis. *PLoS ONE* 2015, 10, e0139386.

67. Greene, C.E. *Infectious Diseases of the Dog and Cat*; WB Saunders: Philadelphia, PA, USA; Elsevier Science: Amsterdam, the Netherlands, 2006; ISBN 072160062X.

68. Burgio, F.; Meyer, L.; Armstrong, R. A Comparative Laboratory Trial Evaluating the Immediate Efficacy of Fluralaner, Afoxolaner, Sarolaner and Imidacloprid + Permethrin against Adult *Rhipicephalus Sanguineus* (Sensu Lato) Ticks Attached to Dogs. *Parasit Vectors* 2016, 9, 626.

69. Fourie, J.J.; Stanneck, D.; Luus, H.G.; Beugnet, F.; Wijnveld, M.; Jongejan, F. Transmission of *Ehrlichia Canis* by *Rhipicephalus Sanguineus* Ticks Feeding on Dogs and on Artificial Membranes. *Vet. Parasitol.* 2013, 197, 595–603.

70. Gray, J.S.; Dautel, H.; Estrada-Peña, A.; Kahl, O.; Lindgren, E. Effects of Climate Change on Ticks and Tick-Borne Diseases in Europe. *Interdiscip. Perspect. Infect. Dis.* 2009, 2009, 593232.

71. Gray, J.; Dantas-Torres, F.; Estrada-Peña, A.; Levin, M. Systematics and Ecology of the Brown Dog Tick, *Rhipicephalus Sanguineus*. *Ticks Tick Borne Dis.* 2013, 4, 171–180.

72. Uspensky, I.; Ioffe-Uspensky, I. The Dog Factor in Brown Dog Tick *Rhipicephalus Sanguineus* (Acari: Ixodidae) Infestations in and near Human Dwellings. *Int. J. Med. Microbiol.* 2002, 291, 156–163.

73. Kidd, L.; Breitschwerdt, E.B. Transmission Times and Prevention of Tick-Borne Diseases in Dogs. *Compend. Contin. Educ. Pract. Vet.-N. Am. Ed.* 2003, 25, 742–753.

74. Bremer, W.G.; Schaefer, J.J.; Wagner, E.R.; Ewing, S.A.; Rikihisa, Y.; Needham, G.R.; Jittapalapong, S.; Moore, D.L.; Stich, R.W. Transstadial and Intrastadial Experimental Transmission of *Ehrlichia Canis* by Male *Rhipicephalus Sanguineus*. *Vet. Parasitol.* 2005, 131, 95–105.

75. Phillips, J. Rocky Mountain Spotted Fever. *Workplace Health Saf.* 2017, 65, 48.

76. Ipek, N.D.S.; Özübek, S.; Aktas, M. Molecular Evidence for Transstadial Transmission of *Ehrlichia Canis* by *Rhipicephalus Sanguineus* Sensu Lato under Field Conditions. *J. Med. Entomol.* 2018, 55, 440–444.

77. Mavromatis, K.; Doyle, C.K.; Lykidis, A.; Ivanova, N.; Francino, M.P.; Chain, P.; Shin, M.; Malfatti, S.; Larimer, F.; Copeland, A.; et al. The Genome of the Obligately Intracellular Bacterium *Ehrlichia Canis* Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies. *J. Bacteriol.* 2006, 188, 4015–4023.

78. Paddock, C.D.; Childs, J.E. *Ehrlichia Chaffeensis*: A Prototypical Emerging Pathogen. *Clin. Microbiol. Rev.* 2003, 16, 37–64.

79. Ismail, N.; Bloch, K.C.; McBride, J.W. Human Ehrlichiosis and Anaplasmosis. *Clin. Lab. Med.* 2010, 30, 261–292.

80. Tabar, M.D.; Francino, O.; Altet, L.; Sánchez, A.; Ferrer, L.; Roura, X. PCR Survey of Vectorborne Pathogens in Dogs Living in and around Barcelona, an Area Endemic for Leishmaniosis. *Vet. Rec.* 2009, 164, 112–116.

81. Egenvall, A.; Björsdorff, A.; Lilliehöök, I.; Engvall, E.O.; Karlstam, E.; Artursson, K.; Hedhammar, A.; Gunnarsson, A. Early Manifestations of Granulocytic Ehrlichiosis in Dogs Inoculated Experimentally with a Swedish *Ehrlichia* Species Isolate. *Vet. Rec.* 1998, 143, 412–417.

82. Egenvall, A.E.; Hedhammar, Å.A.; Björsdorff, A.I. Clinical Features and Serology of 14 Dogs Affected by Granulocytic Ehrlichiosis in Sweden. *Vet. Rec.* 1997, 140, 222–226.

83. McClure, J.C.; Crothers, M.L.; Schaefer, J.J.; Stanley, P.D.; Needham, G.R.; Ewing, S.A.; Stich, R.W. Efficacy of a Doxycycline Treatment Regimen Initiated during Three Different Phases of Experimental Ehrlichiosis. *Antimicrob. Agents Chemother.* 2010, 54, 5012–5020.

84. Waner, T.; Harrus, S.; Bark, H.; Bogin, E.; Avidar, Y.; Keysary, A. Characterization of the Subclinical Phase of Canine Ehrlichiosis in Experimentally Infected Beagle Dogs. *Vet. Parasitol.* 1997, 69, 307–317.

85. Mylonakis, M.E.; Koutinas, A.F.; Breitschwerdt, E.B.; Hegarty, B.C.; Billinis, C.D.; Leontides, L.S.; Kontos, V.S. Chronic Canine Ehrlichiosis (*Ehrlichia canis*): A Retrospective Study of 19 Natural Cases. *J. Am. Anim. Hosp. Assoc.* 2004, 40, 174–184.

86. Maggi, R.G.; Birkenheuer, A.J.; Hegarty, B.C.; Bradley, J.M.; Levy, M.G.; Breitschwerdt, E.B. Comparison of Serological and Molecular Panels for Diagnosis of Vector-Borne Diseases in Dogs. *Parasites Vectors* 2014, 7, 127.

87. Pérez, C.; Maggi, R.G.; Diniz, P.P.V.P.; Breitschwerdt, E.B. Molecular and Serological Diagnosis of *Bartonella* Infection in 61 Dogs from the United States. *J. Vet. Intern. Med.* 2011, 25, 805–810.

88. Diniz, P.P.V.D.P.; Maggi, R.G.; Schwartz, D.S.; Cadenas, M.B.; Bradley, J.M.; Hegarty, B.; Breutschwerdt, E.B. Canine Bartonellosis: Serological and Molecular Prevalence in Brazil and Evidence of Co-Infection with *Bartonella henselae* and *Bartonella vinsonii* Subsp. *Berkhoffii*. *Vet. Res.* 2007, 38, 697–710.

89. Cowell, R.L.; Tyler, R.D.; Clinkenbeard, K.D.; Meinkoth, J.H. Ehrlichiosis and Polyarthritis in Three Dogs. *J. Am. Vet. Med. Assoc.* 1988, 192, 1093–1095.

90. Ecker, D.J.; Massire, C.; Blyn, L.B.; Hofstadler, S.A.; Hannis, J.C.; Eshoo, M.W.; Hall, T.A.; Sampath, R. Molecular Genotyping of Microbes by Multilocus PCR and Mass Spectrometry: A

New Tool for Hospital Infection Control and Public Health Surveillance. In *Molecular Epidemiology of Microorganisms*; Springer: Berlin/Heidelberg, Germany, 2009; pp. 71–87.

91. Codner, E.C.; Farris-Smith, L.L. Characterization of the Subclinical Phase of Ehrlichiosis in Dogs. *J. Am. Vet. Med. Assoc.* 1986, 189, 47–50.
92. Mylonakis, M.E.; Ceron, J.J.; Leontides, L.; Siarkou, V.I.; Martinez, S.; Tvarijonaviciute, A.; Koutinas, A.F.; Harrus, S. Serum Acute Phase Proteins as Clinical Phase Indicators and Outcome Predictors in Naturally Occurring Canine Monocytic Ehrlichiosis. *J. Vet. Intern. Med.* 2011, 25, 811–817.
93. Ybañez, A.P.; Ybañez, R.H.D.; Villavelez, R.R.; Malingin, H.P.F.; Barrameda, D.N.M.; Naquila, S.V.; Olimpos, S.M.B. Retrospective Analyses of Dogs Found Serologically Positive for *Ehrlichia Canis* in Cebu, Philippines from 2003 to 2014. *Vet. World* 2016, 9, 43–47.
94. Gianopoulos, A.; Mylonakis, M.E.; Theodorou, K.; Christopher, M.M. Quantitative and Qualitative Leukocyte Abnormalities in Dogs with Experimental and Naturally Occurring Acute Canine Monocytic Ehrlichiosis. *Vet. Clin. Pathol.* 2016, 45, 281–290.
95. de Castro, M.B.; Machado, R.Z.; de Aquino, L.P.C.T.; Alessi, A.C.; Costa, M.T. Experimental Acute Canine Monocytic Ehrlichiosis: Clinicopathological and Immunopathological Findings. *Vet. Parasitol.* 2004, 119, 73–86.
96. Kohn, B.; Galke, D.; Beelitz, P.; Pfister, K. Clinical Features of Canine Granulocytic Anaplasmosis in 18 Naturally Infected Dogs. *J. Vet. Intern. Med.* 2008, 22, 1289–1295.
97. Quroollo, B.A.; Davenport, A.C.; Sherbert, B.M.; Grindem, C.B.; Birkenheuer, A.J.; Breitschwerdt, E.B. Infection with Panola Mountain *Ehrlichia* Sp. in a Dog with Atypical Lymphocytes and Clonal T-Cell Expansion. *J. Vet. Intern. Med.* 2013, 27, 1251–1255.
98. Villaescusa, A.; Tesouro, M.A.; García-Sancho, M.; Ayllón, T.; Rodríguez-Franco, F.; Sainz, A. Evaluation of Peripheral Blood Lymphocyte Subsets in Family-Owned Dogs Naturally Infected by *Ehrlichia Canis*. *Comp. Immunol. Microbiol. Infect. Dis.* 2012, 35, 391–396.
99. Rungsipipat, A.; Oda, M.; Kumpoosiri, N.; Wangnaitham, S.; Poosonthontham, R.; Komkaew, W.; Suksawat, F.; Ryoji, Y. Clinicopathological Study of Experimentally Induced Canine Monocytic Ehrlichiosis. *Comp. Clin. Pathol.* 2009, 18, 13–22.
100. Inokuma, H.; Ohno, K.; Onishi, T.; Raoult, D.; Brouqui, P. Detection of Ehrlichial Infection by PCR in Dogs from Yamaguchi and Okinawa Prefectures, Japan. *J. Vet. Med. Sci.* 2001, 63, 815–817.
101. Mylonakis, M.E.; Koutinas, A.F.; Billinis, C.; Leontides, L.S.; Kontos, V.; Papadopoulos, O.; Rallis, T.; Fytianou, A. Evaluation of Cytology in the Diagnosis of Acute Canine Monocytic Ehrlichiosis (*Ehrlichia Canis*): A Comparison between Five Methods. *Vet. Microbiol.* 2003, 91, 197–204.

Retrieved from <https://encyclopedia.pub/entry/history/show/93015>