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Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the

development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range

of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique

of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in

biosensing applications.

biosensors  plasmonics  surface plasmon resonance  lab-on-chip

1. Introduction

Over the years, biosensors have been used as analytical tools that take a biological response as an input and

translate it into an electrical signal. As per the International Union of Pure and Applied Chemistry (IUPAC),

biosensors are self-contained integrated devices that can offer quantitative results that are thoroughly analyzed via

biological recognitions or receptors in contact with a transducer . Overall, biosensors are designed to have high

specificity, selectivity, independence of physical restrictions like pH and temperature, and several other

advantages, making them high in demand .

Biosensors were used in several applications including environmental evaluation, medical diagnosis, metabolic

engineering, and food analysis . As highly accurate analytical devices, biosensors recognize and scrutinize

biological analytes such as enzymes, antibodies, aptamers, lectins, or nucleic acids via bioreceptors as shown in

Figure 1a . A transducer then converts the analyzed results into signals which get amplified and detected by a

physiochemical detector to form an optical signal or a digitized output as shown in Figure 1b . Fabricating a

biosensor requires materials that are characterized depending on their mechanism based on two main categories.

The first category includes biocatalytic groups involving enzymes via immobilization methods. The second category

would include bio-affinity groups having antibodies and nucleic acids which could be natural or artificial, single-

stranded or double-stranded nucleic acids, RNA/DNA hybrids, and anti-sense oligonucleotides .
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Figure 1. A schematic diagram of (a) recognition elements in plasmonic biosensors in (i) gene detection between

electrochemical DNA and target DNA, (ii) small-molecule sensing for analyte-antibody conjugation, (iii) diagnostics

between antibodies and analytes, (iv) bacterial detection between receptor biomolecule and bacteria, (v) targeting

specific biomolecules and (b) the parts forming biosensors including a bioreceptor to capture the analyte

connected to a transducer to convert the sample to be amplified and digitally presented.

Biosensors offer accurate analyte concentrations due to their direct and linear relationship to the intensity of the

signal that requires detection. Hence, this helps in predicting the sensitivity of various biosensors. The most

common pathogen detecting biosensors used are magnetic , colorimetric , electrochemical , lateral-flow

, and optical biosensors . Recently, research on optical biosensors, especially plasmonic and metamaterial-
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based biosensors, has grown massively due to their wide range of advantages including being versatile, highly-

sensitive, reusable, affordable, label-free monitoring, ultra-low detection limits, and real-time sensing 

.

1.1. Mechanism of Plasmonic Biosensors

Plasmonic optical biosensors are classified into two types of platforms; one which uses a thin metal-based film and

another which uses nanostructure-based inorganic plasmon resonance . The most common plasmonic

biosensor used is the surface plasmon resonance (SPR) which is a metal-based film sensor, mostly made of gold,

used to characterize biomolecular interactions . The angle at which the SPR is formed as light is focused

on the metal film and reflected onto a detector. The output collected is due to energized plasmonic electrons

formed from the collective refractive index (RI) of the oscillations of the electrons in the conduction band and the

oscillations of the electric field formed by the light. The angle at which the SPR is measured relies on the RI of the

material attached to the metal film. Hence, any alteration in the angle of the incidence or the RI of the material

affects the resonance measured while detecting the analytes . Decreasing the size results in a blueshift which

holds a high frequency, while increasing the surrounding dielectric constant results in a red shift which holds a low

frequency . As shown in Figure 2a, the targeted analytes in a sample bind to the biological receptors

restrained on the film to form a different RI which is usually known and indicates the presence of the targeted

analyte . This SPR biosensor can detect viruses and then be reused after applying proper chemical treatment

practices as shown in Figure 2b .
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Figure 2. (a) A schematic diagram of the mechanism of plasmonic optical biosensors, and (b) Stages of SPR

sensor from detecting analytes to detaching to be reused.

The efficiency of the plasmonic optical biosensor could be further enhanced when combined with surface-

enhanced Raman scattering (SERS). SERS is used as a non-invasive, label-free diagnostic sensor that can attain

abundant information from one measurement. Yet, due to the weak signal formed when detecting analytes at low
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concentrations, SERS is considered inappropriate . Hence, by using plasmonic nanostructures for making the

substrates for SERS, the signal becomes amplified by numerous orders of magnitude even though fabricating

substrates for SERS is difficult . This was proven in 2017 when Elsayed et al. fabricated a low-cost silicon

substrate using silicon nanowires covered with silicon nanoparticles as substrates for SERS. Results showed

detection levels reaching 10–11 M, which is a significant increase in the order of magnitude. The enhancement

factor of silver NPs reaches 6–8 × 10  but when deposited on the silicon nanowires, it reaches 10  .

1.2. Determining the Efficiency of a Plasmonic Biosensor

To determine the efficiency of a biosensor, its limit of detection (LOD) and specificity(s) should be measured and

attuned for its required application. The Clinical and Laboratory Standards Institute (CLSI) provides a guideline

known as EP17 along with the protocols needed to determine the LOD  (p. 2).

2. Applications of Plasmonic Optical Biosensors

2.1. The Use of Plasmonic Biosensors for Viral Detection

In 2019, an unanticipated disease known as the coronavirus (SARS-CoV-2) was discovered in Wuhan, China,

causing a global pandemic. In less than two years, this novel virus affected millions and resulted in the death of

more than four million people worldwide as per the WHO . Furthermore, the coronavirus has significantly

affected the world’s economy and resulted in a noticeable change in the social lifestyle of people to avoid getting

infected with the fast-spreading, contagious virus. Hence, immediate detection methods of the virus with accurate,

reliable, and instant results were needed to limit the virus from outspreading any further.

Infectious viruses have been detected over the years directly by targeting the virus itself or indirectly by targeting

the secondary responses of the virus . Targeting a virus directly involves targeting the entire virion, the antigens

of the virus, or the single or double-stranded RNA or DNA of the virus. Indirect detection methods include

serological testing for precise antibodies released due to a primary response to an antigen (IgM) or a secondary

response due to previous exposure to the same type of antigen (IgG) .

Some of the most common methods in detecting infectious viruses include immunofluorescence assays,

hemagglutination assays, viral plaque assay, viral flow cytometry, enzyme linked immunosorbent assay (ELISA)

, chest computed tomography (CT) , and nucleic acid amplification test (NAAT) including polymerase chain

reaction (PCR) and real-time quantitative PCR (RT-qPCR) . Although those methods have shown

successful outcomes, they have also displayed substantial limitations that deferred their usage in future viral

detection as shown in Table 1.

Table 1. Advantages and limitations of common viral detecting methods.
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Current Methods for Virus

Detection
Advantages Limitations Refs.

Immunofluorescence

Assays

Numerous, simultaneous samples

can be analyzed and stored for

some time.

Fluorescent molecules bound to

primary antibody is limited.

Low sensitivity may result in false

negatives.

Hemagglutination

Assays

Low-cost instruments.

Results within hours.

Has standardization as it is

recognized in labs worldwide.

Little specificity.

Requires trained personnel. Analysis

needed by qualified individuals.

Difficult inter-laboratory comparison

of results due to the several

controlled variables.

Viral Plaque

Assay

Available in most labs.

Rapid results.

Absence of standardization.

Involves costly repeat runs for

accurate results.

Viral Flow

Cytometry

Rapid results.

Numerous cells

analyzed instantly.

Requires highly trained personnel.

Requires ongoing maintenance by

service engineers.

ELISA

Accurate/fast results.

Very sensitive process.

Easily automated.

Expensive preparation method.

Requires trained personnel.

CT Combined assessment.

Short acquisition time.

Expensive preparation method.

Requires trained personnel.
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Hence, to overcome those drawbacks, biosensors were pursued as viral diagnostic tools since they are highly-

sensitive, affordable, robust, automated, and have a low fluid consumption with faster reaction time . Viruses are

detected using plasmonic biosensors that have planar, optofluidic, nanoparticle-based, quantum dot enhanced

fluorescent local SPR, or nanowire-based structures as shown in Figure 3 . Further description of each method

will be discussed later.

Figure 3. Common structures of plasmonic biosensors including (a) planar structure plasmonic biosensor where

the base is a metal layer covered by a virus capturing layer to detect the viruses, (b) nanoparticle-based structure

plasmonic biosensors bind to metal then a capturing molecule to capture viruses, (c) nanowire-based plasmonic

Current Methods for Virus

Detection
Advantages Limitations Refs.

Exposure to gamma rays.

NAAT
Very sensitive process.

Accurate and reliable

Requires trained personnel.

Expensive detection kits.

Time-consuming (2–3 days). False-

positive cases.
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biosensors with nanowires to entrap the targeted viruses, (d) optofluidic structure plasmonic biosensors with a

virus capturing layer bind to a capturing molecule for higher detection of viruses, and (e) quantum dot

fluorescence-based plasmonic biosensors with the capturing molecule bind to quantum dots which show visible

changes among binding with viruses.

2.2. The Use of Plasmonic Biosensors for Environmental Evaluation

Plasmonic biosensors are great candidates when analyzing environmental contaminants. The amount of pollution

increasing at a fast pace requires fast, highly specific, and cost-effective analytical tools that can be used for

monitoring pollutants in our environment. Providentially, great initiatives have been made for controlling

environmental pollution and several scientific researches were conducted and are still in progress to satisfy the

concern of society regarding the environment and the pollution overtaking it . Biosensors are great

analytical techniques that can use a biological mechanism to detect analytes in the environment using chemical

sensors for environmental evaluation . When detecting environmental analytes, biosensors usually include

whole microorganisms, DNA, enzymes, and antibodies as recognition receptors .

Environmental monitoring using biosensors rather than conventional analyzing tools is of great benefit since they

are portable, miniatured, compact, and has high selectivity to different matrices using low input of sample

preparation which can be used on an on-going basis for regular environmental analysis . Hence, biosensors can

be used as monitoring tools in the environment to assess the biological quality of ecological molecules including

organic and inorganic pollutants . In 2017, a MIR sensor was fabricated by using doped silicon structured as

nanowires with 10 nm radius using a numerical analysis technique known as Finite-difference time-domain method

(FDTD). The simulation done by the 2D FDTD showed a total-field scattered-field source with a 3 μm wavelength

around the plasmonic resonance used for exciting the nanowire.

2.3. The Use of Plasmonic Biosensors for Food Analysis

Diseases and malnutrition occurring due to the quality of products made food safety of great priority to diminish the

health risks .

Conventional methods used to ensure food safety like PCR, ELISA, high-performance liquid chromatography

(HPLC), and liquid chromatography-mass spectrometry (LCMS) are accurate but costly, time-consuming, and

laborious . Hence, using automated optical biosensors is an optimum solution for analyzing food by using a

highly sensitive and selective low-cost analytical tool . SPR among different types of optical biosensors has

undergone great development to enable the detection of various pathogens found in food. Plasmonic biosensors

were further upgraded for better analysis via coupling of various methods (Raman, fluorescence, and

luminescence) to have less LOD and higher sensitivity. Hence, as shown in Table 2, SPR biosensor is considered

much more efficient than traditional methods in monitoring and analyzing food.

Table 2. SPR in comparison to other techniques for monitoring food.
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Component Other Methods SPR Refs.

Heavy metals

Atomic Absorption Spectroscopy

Destructive technique and single sample

analyzed

Inductively Coupled Plasma Mass

Spectrometry

Costly and destructive technique

X-ray Fluorescence Spectrometry

Radioactive technique

Low-cost

Quick measurement

Highly sensitive

Non-destructive

Food Allergens

ELISA

Varying as per the type of kit with LOD is

2.5 mg/L

Highly sensitive

LOD of 57.8 ng mL

Citrinin

(Mycotoxin)

HPLC and LC-MS

Time-consuming and costly

Highly effective and selective

Simple, quick, and highly

sensitive

Pesticides

LC-MS/MS

Complicated

Requires sample pre-treatment prior to

analysis

Highly precise

Less response-time

Low-cost and low LOD

β-

Lactoglobulin

ELISA and LC-MS

Inconsistency and costly

Speedy and detects in real

time
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3. Introducing Metamaterials to Plasmonic Biosensors

With all the exquisite properties of plasmonic biosensors, the sensitivity has been further improved by introducing

metamaterials. Metamaterial-based biosensors provide different geometric structures, each having its own sensing

properties, which expands and improves the use of conventional plasmonic biosensors . In the 1960s, a

Russian physic named Victor Veselago initiated a theoretical concept for materials with simultaneous negative

permittivity and permeability where light propagates in an opposite direction to that of the flow of energy, giving an

uncommon refraction of light. Materials that follow this concept are known as left-handed materials .

In 1999, a theory was made by Pendry et al. declaring that microstructures having extremely small nonmagnetic

conducting sheets in comparison to the wavelength of radiation reveal a magnetic permeability that is highly

effective and can be further modified to display changing magnetic permeability together with the imaginary

component . This substance was named in the same year by Rodger Walser as “metamaterials” which he

defined as “macroscopic composites having a synthetic, three-dimensional, periodic cellular architecture designed

to produce an optimized combination, not available in nature, of two or more responses to specific excitation” .

The following year, Smith et al. confirmed the use of left-handed metamaterial using a microwave regime by

experimenting with interspaced nonmagnetic conductive split-ring resonators with continuous wires . Since then,

metamaterials have been used, manipulated, and geometrically enhanced to have tuned properties that can be

used in different applications including sensors, biological imaging, and spectroscopy .

The use of metamaterials was further explored as biosensors as they were categorized based on their structure

into three main groups; 2D metamaterial-based biosensors, 3D metamaterial-based biosensors, and meta-surface-

based biosensors as shown in Figure 4. The breakthrough of metamaterials with their improved sensitivity allowed

the successful detection of several viruses including HIV, Zika virus, avian influenza virus, CPMV, and PRD1 

. Even further, metamaterials became a tool for novelty in label-free point-of-care viral detection.
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Figure 4. Common categories of metamaterials as (a) 2D metamaterial-based biosensors; (b) 3D metamaterial-

based biosensors; and (c) metasurface-based biosensors.

4. Lab-on-a-Chip (LoC) for Plasmonic Biosensors

Molecular and serological testing is critical for diagnosing patients. Hence, the need for having faster and more

reliable diagnostic tools for immediate disease analysis and prevention of the spreading of pathogens and diseases

is always pursued and high in demand . LoC is considered the best device used for Point-of-Care testing

(POCT) as it is based on biosensors that are designed for their application and can be upgraded with the most

recent advances using microfluidics .

In this section, plasmonic biosensors are focused on due to their various LoC applications. The main target of the

plasmonic-based LoC devices is to use planar technology to make an integrated photonic circuit that has good

sensing capabilities . This technology has a few unique proficiencies which integrates many different

sensors on the same chip to detect different pathogens. In addition, the utilization of planar technology supports

the mass production need and provides cost-effective solutions. Hence, silicon-based photonics are known to be a

major technology platform for such applications . Hence, plasmonics have been recently introduced at a

wide range for such applications due to their greater sensitivity and improved selectivity .
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