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Automatic analysis of video in sports is a possible solution to the demands of fans and professionals for various

kinds of information. Analyzing videos in sports has provided a wide range of applications, which include player

positions, extraction of the ball’s trajectory, content extraction, and indexing, summarization, detection of highlights,

on-demand 3D reconstruction, animations, generation of virtual view, editorial content creation, virtual content

insertion, visualization and enhancement of content, gameplay analysis and evaluations, identifying player’s

actions, referee decisions and other fundamental elements required for the analysis of a game. Recent

developments in video analysis of sports have a focus on the features of computer vision techniques, which are

used to perform certain operations for which these are assigned, such as detailed complex analysis such as

detection and classification of each player based on their team in every frame or by recognizing the jersey number

to classify players based on their team will help to classify various events where the player is involved. In higher-

level analysis, such as tracking the player or ball, many more such evaluations are to be considered for the

evaluation of a player’s skills, detecting the team’s strategies, events and the formation of tactical positions such as

midfield analysis in various sports such as soccer, basketball, and also various sports vision applications such as

smart assistants, virtual umpires, assistance coaches. A higher-level semantic interpretation is an effective

substitute, especially in situations when reduced human intervention and real-time analysis are desired for the

exploitation of the delivered system outputs.

sports  ball detection  player tracking  artificial intelligence in sports  computer vision

embedded paltforms

1. Basketball

Basketball is a sport played between two teams consisting of five players each. The task of this sport is to score

more points than the opponent. This sport has several activities with the ball such as passing, throwing, bouncing,

batting, or rolling the ball from one player to another. Physical contact with an opponent player may be a foul if the

contact impedes the players’ desired movement. The advancements in computer vision techniques have effectively

employed fully automated systems to replace the manual analysis of basketball sports. Recognizing the player’s

action and classifying the events  in basketball videos helps to analyze the player’s performance. Player/ball

detection and tracking in basketball videos are carried out in  but fail in assigning specific identification

to avoid identity switching among the players when they cross. By estimating the pose of the player, the trajectory

of the ball  is estimated from various distances to the basket. By recognizing and classifying the referee’s
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signals , player behavior can be assessed and highlights of the game can be extracted . The behavior of a

basketball team  can be characterized by the dynamics of space creation presented in  that

works to counteract space creation dynamics with a defensive play presented in . By detecting the specific

location of the player and ball in the basketball court, the player movement can be predicted  and the ball

trajectory  can be generated in three dimensions which is a complicated task. It is also necessary to study

the extraction of basketball players’ shooting motion trajectory, combined with the image feature analysis method of

basketball shooting, to reconstruct and quantitatively track the basketball players’ shooting motion trajectory 

. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the

players in the game, because the situation of the game changes rapidly, and the structure of the data is

complicated. Therefore, it is necessary to analyze the real-time gameplay .  Table 1  summarizes various

proposed methodologies used to complete various challenging tasks in basketball sport including their limitations.

Table 1. Studies in basketball.
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Studies in Basketball

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Recognizing
actions of

basketball players
by using image

recognition
techniques

Bi-LSTM
Sequence2Sequence

The metrics used to
evaluate the method are

the Spearman rank-
order correlation

coefficient, Kendall rank-
order correlation

coefficient, Pearson
linear correlation

coefficient, and Root
Mean Squared Error
and achieved 0.921,

0.803, 0.932, and 1.03,
respectively.

The methodology failed to
recognize difficult actions
due to which accuracy is
reduced. The accuracy of
action recognition can be

improved with a deep
convolutional neural

network.

Multi-future
trajectory

prediction in
basketball.

Conditional Variational
Recurrent Neural

Networks (RNN)—
TrajNet++

The proposed
methodology was tested

on Average
Displacement Error and

Final Displacement
Error metrics. The

methodology is robust if
the number it achieves

is smaller than 7.01 and
10.61.

The proposed methodology
fails to predict the

trajectories in the case of
uncertain and complex

scenarios. As the behavior
of the basketball or players

is dynamic, belief maps
cannot steer future

positions. Training the
model with a dataset of

different events can rectify
the failures of predictions.

Predicting line-up
performance of

basketball players

RNN + NN At the point guard (pg)
position 4 candidates
were detected and at

-

[3]

[26]

[30]



Traditional Computer-Vision Methods Implemented in Sports | Encyclopedia.pub

https://encyclopedia.pub/entry/23036 3/41

Studies in Basketball

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

by analyzing the
situation of the

field.

the center (c) position 3
candidates were

detected. The total
score of pg candidates
is 13.67, 12.96, 13.42,
10.39, and where the

total score of c
candidates is 10.21,
14.08, and 13.48,

respectively.

Multiplayer
tracking in

basketball videos

YOLOv3 + Deep-SORT,
Faster-RCNN + Deep-

SORT, YOLOv3 +
DeepMOT, Faster-

RCNN + DeepMOT, JDE

Faster-RCNN provides
better accuracy than

YOLOv3 among
baseline detectors. The

joint Detection and
Embedding method

performs better in the
accuracy of tracking and
computing speed among

multi-object tracking
methods.

Tracking in specific areas
such as severe occlusions
and improving detection
precision improves the

accuracy and computation
speed. By adopting frame

extraction methods, in
terms of speed and

accuracy, it can achieve
comprehensive

performance, which may
be an alternative solution.

Recognizing the
referee signals
from real-time

videos in a
basketball game.

HOG + SVM, LBP +
SVM

Achieved an accuracy of
95.6% for referee signal
recognition using local
binary pattern features
and SVM classification.

In the case of a noisy
environment, a significant
chance of occlusion, an
unusual viewing angle,

and/or variability of
gestures, the performance
of the proposed method is
not consistent. Detecting

jersey color and eliminating
all other detected elements

in the frame can be the
other solution to improve
the accuracy of referee

signal recognition.

Event recognition
in basketball

videos
CNN

mAP for group activity
recognition is 72.1%

The proposed model can
recognize the global

movement in the video. By
recognizing the local

movements, the accuracy
can be improved.

Analyzing the
behavior of the

CNN + RNN Achieved an accuracy of
76.5% for four types of

The proposed model gives
less accuracy for actions
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Studies in Basketball

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

player. actions in basketball
videos.

such as passing and
fouling. This also gives less
accuracy of recognition and

prediction on the test
dataset compared to the

validation dataset.

Tracking ball
movements and
classification of

players in a
basketball game

YOLO + Joy2019

Jersey number
recognition in terms of
Precision achieved is

74.3%. Player
recognition in terms of

Recall achieved 89.8%.

YOLO confuses the
overlapped image for a

single player. In the
subsequent frame, the

tracking ID of the
overlapped player is

exchanged, which causes
wrong player information to

be associated with the
identified box.

Event
classifications in
basketball videos

CNN + LSTM

The average accuracy
using a two-stage event

classification scheme
achieved 60.96%.

Performance can be
improved by introducing

information such as
individual player pose
detection and player

location detection

Classification of
different

defensive
strategies of

basketball payers,
particularly when
they deviate from

their initial
defensive action.

KNN, Decision Trees,
and SVM

Achieved 69%
classification accuracy
for automatic defensive
strategy identification.

Considered only two
defensive strategies

`switch’ and `trap’ involved
in Basketball. In addition,
the alternative method of

labeling large Spatio-
temporal datasets will also

lead to better results.
Future research may also
consider other defensive
strategies such as pick-

and-roll and pick-and-pop.

Basketball
trajectory

prediction based
on real data and
generating new

trajectory
samples.

BLSTM + MDN

The proposed method
performed well in terms
of convergence rate and

final AUC (91%) and
proved deep learning
models perform better

than conventional
models (e.g., GLM,

GBM).

To improve the accuracy
time series the prediction

has to consider. By
considering factors such as

player cooperation and
defense when predicting
NBA player positions, the
performance of the model

can be improved.

[5]
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2. Soccer

Soccer is played using football, and eleven players in two teams compete to deliver the ball into the other team’s

goal, thereby scoring a goal. The players confuse each other by changing their speed or direction unexpectedly.

Due to them having the same jersey color, players look almost identical and are frequently possess the ball, which

leads to severe occlusions and tracking ambiguities. In such a case, a jersey number must be detected to

recognize the player . Accurate tracking  by detection  of multiple

soccer players as well as the ball in real-time is a major challenge to evaluate the performance of the players, to

find their relative positions at regular intervals, and to link spatiotemporal data to extract trajectories. The systems

which evaluate the player  or team performance  have the potential to understand the game’s aspects, which

are not obvious to the human eye. These systems are able to evaluate the activities of players successfully 

such as the distance covered by players, shot detection , the number of sprints, player’s position, and their

movements , the player’s relative position concerning other players, possession  of the soccer ball and

motion/gesture recognition of the referee , predicting player trajectories for shot situations . The generated

data can be used to evaluate individual player performance, occlusion handling  by the detecting position of the

player , action recognition , predicting and classifying the passes , key event extraction 

, tactical performance of the team , and analyzing the team’s tactics based on the

team formation , along with generating highlights .  Table 2  summarizes various proposed

methodologies to resolve various challenging tasks in soccer with their limitations.

Table 2. Studies in Soccer.

Studies in Basketball

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Generating
basketball

trajectories.
GRU-CNN

Validated on a
hierarchical policy

network (HPN) with
ground truth and 3

baselines.

The proposed model failed
in the trajectory of a three-

dimensional basketball
match.

Score detection,
highlights video

generation in
basketball videos.

BEI+CNN

Automatically analyses
the basketball match,
detects scoring, and
generates highlights.

Achieved an accuracy,
precision, recall, and F1-

score of 94.59%,
96.55%, 92.31%, and

94.38%.

The proposed method is
lacking in computation

speed which achieved 5
frames per second.

Therefore, it cannot be
implemented in a real-time

basketball match.

Multi-person
event recognition

in basketball
videos.

BLSTM

Event classification and
event detection were
achieved in terms of

mean average precision,
i.e., 51.6% and 43.5%.

A high-resolution dataset
can improve the

performance of the model.

Player behavior
analysis.

RNN
Achieved an accuracy of

80% over offensive
strategies.

The methodology fails in
many factors such as

complexity of interaction,
distinctiveness, and

diversity of the target
classes and other extrinsic
factors such as reactions to

defense, unexpected
events such as fouls, and
consistency of executions.

Prediction of the
3-point shot in the
basketball game

RNN
Evaluated in terms of
AUC and achieved

84.30%.

The proposed method fails
in the case of high ball
velocity and the noisy
nature of motion data.
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Studies in Soccer

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Player and ball
detection and

YOLOv3 and SORT Methodology achieved
tracking accuracy of
93.7% on multiple

This methodology effectively
handles challenging situations,

such as partial occlusions, players

[43]
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Studies in Soccer

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

tracking in
soccer.

object tracking accuracy
metrics with a detection
speed of 23.7 FPS and
a tracking speed of 11.3

FPS.

and the ball reappearing after a
few frames, but fails when the
players are severely occluded.

Player, referee
and ball

detection and
tracking by
jersey color

recognition in
soccer.

DeepPlayerTrack

The model achieved a
tracking accuracy of

96% and 60% on MOTA
and GMOTA metrics,
respectively, with a

detection speed of 23
FPS.

The limitation of this method is
that, when a player with the same
jersey color is occluded, the ID of

the player is switched.

Tracking soccer
players to

evaluate the
number of

goals scored by
a player.

Machine Learning
and Deep

Reinforcement
Learning.

Performance of the
player tracking model
measured in terms of
mAP achieved 74.6%.

The method failed to track the ball
at critical moments such as

passing at the beginning and
shooting. It also failed to overcome

the identity switching problem.

Extracting ball
events to

classify the
player’s

passing style.

Convolutional Auto-
Encoder

The methodology was
evaluated in terms of

accuracy and achieved
76.5% for 20 players.

Concatenation of the auto-encoder
and extreme learning machine

techniques will improve
classification of the event

performance.

Detecting
events in
soccer.

Variational Auto-
encoder and
EfficientNet

Achieved an F1-score
of 95.2% event images
and recall of 51.2% on
images not related to
soccer at a threshold

value of 0.50.

The deep extreme learning
machine technique which employs
the auto-encoder technique may

enhance the event detection
accuracy.

Action spotting
soccer video.

YOLO-like encoder
The algorithm achieved

an mAP of 62.5%.
-

Team
performance
analysis in

soccer

SVM

Prediction models
achieved an overall

accuracy of 75.2% in
predicting the correct
segmental and the

outcome of the
likelihood of the team
making a successful

attempt to score a goal
on the used dataset.

The proposed model failed in
identifying the players that are

more frequently involved in match
events that end with an attempt at

scoring i.e., a `SHOT’ at goal,
which may assist sports analysts

and team staff to develop
strategies suited to an opponent’s

playing style.

[44]
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Studies in Soccer

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Motion
Recognition of

assistant
referees in

soccer

AlexNet, VGGNet-
16, ResNet-18, and

DenseNet-121

The proposed algorithm
achieved 97.56%

accuracy with real-time
operations.

Though the proposed algorithm is
immune to variations of

illuminance caused by weather
conditions, it failed in the case of
occlusions between referees and

players.

Predicting the
attributes (Loss

or Win) in
soccer.

ANN

The proposed model
predicts 83.3% for the

winning case and
72.7% for loss.

-

Team tactics
estimation in

soccer videos.

Deep Extreme
Learning Machine

(DELM).

The performance of the
model is measured on
precision, recall, and

F1-score and achieved
87.6%, 88%, and

87.8%, respectively.

Team tactics are estimated based
on the relationship between tactics

of the two teams and ball
possession. The method fails to

estimate the team formation at the
beginning of the game.

Action
recognition in

soccer

CNN-based
Gaussian Weighted
event-based Action

Classifier
architecture

Accuracy in terms of F1-
score achieved was
52.8% for 6 classes.

By classifying the actions into
subtypes, the accuracy of action

recognition can be enhanced.

Detection and
tracking of the
ball in soccer

videos.

VGG – MCNN
Achieved an accuracy

of 87.45%.

It could not detect when the ball
moved out of play in the field, in
the stands region, or from partial

occlusion by players, or when ball
color matched the player’s jersey.

Automatic
event extraction

for soccer
videos based
on multiple
cameras.

YOLO

The U-encoder is
designed for feature
extraction and has

better performance in
terms of accuracy

compared with fixed
feature extractors.

To carry out a tactical analysis of
the team, player trajectory needs

to be analyzed.

Shot detection
in a football

game
MobileNetV2

The MobileNetV2
method performed

better than other feature
extractor methods.

Extracting the features with the
MobileNetV2 and then using 3D

convolution on the extracted
features for each frame can

improve detection performance.

Predicting
player

LSTM Performance is
measured in terms of

The model failed to predict the
player trajectory in the case of

players confusing each other by

[57]
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3. Cricket

Studies in Soccer

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

trajectories for
shot situations

F1-score and achieved
53%.

changing their speed or direction
unexpectedly.

Analyzing the
team formation
in soccer and
formulating

several design
goals.

OpenCV is used for
back-end

visualization.

The formation detection
model achieved a max

accuracy of 96.8%.

The model is limited to scalability
as it cannot be used on high-
resolution soccer videos. The

results are bounded to a particular
match, and it cannot evaluate the
tactical schemes across different
games. Visualization of real-time

team formation is another
drawback as it limits the

visualization of non-trivial spatial
information. By applying state-of-
the-art tracking algorithms, one
can predominantly improve the
performance of tactics analysis.

Player
recognition with
jersey number

recognition.

Spatial
Constellation +

CNN

Achieved an accuracy
of 82% by combining

Spatial Constellation +
CNN models.

The proposed model failed to
handle the players that are not

visible for certain periods.
Predicting the position of invisible
players could improve the quality
of spatial constellation features.

Evaluating and
classifying the

passes in a
football game.

SVM

The proposed model
achieves an accuracy of
90.2% during a football

match.

To determine the quality of each
pass, some factors such as pass

execution of player in a particularly
difficult situation, the strategic

value of the pass, and the
riskiness of the pass need to be
included. To rate the passes in

sequence, it is necessary to
consider the sequence of passes

during which the player possesses
the ball.

Detecting
dribbling

actions and
estimating

positional data
of players in

soccer.

Random forest
Achieved an accuracy

of 93.3%.
The proposed methodology fails to

evaluate the tactical strategies.

Team tactics
estimation in

soccer videos.

SVM The performance of the
methodology is

measured in terms of

The model fails when audiovisual
features could not recognize quick

changes in the team’s tactics.

[81]

[32]

[62]

[56]
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In many aspects of cricket as well, computer vision techniques can effectively replace manual analysis. A cricket

match has many observable elements including batting shots , bowling performance 

, number of runs or score depending on ball movement, detecting and estimating the trajectory of the

ball , decision making on placement of players’ feet , outcome classification to generate commentary 

, detecting umpire decision . Predicting an individual cricketer’s performance  based upon his

past record can be critical in team member selection at international competitions. Such process are highly

subjective and usually require much expertise and negotiation decision-making. By predicting the results of cricket

matches  such as the toss decision, home ground, player fitness, player performance criteria

, and other dynamic strategies the winner can be estimated. The video summarization process gives a compact

version of the original video for ease in managing the interesting video contents. Moreover, the video

summarization methods capture the interest of the viewer by capturing exciting events from the original video 

.  Table 3  summarizes various proposed methodologies with their limitations to resolve various application

issues in cricket.

Table 3. Studies in Cricket.

Studies in Soccer

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

precision, recall, and
F1-score and achieved
98%, 97%, and 98%.

Analyzing past
events in the
case of non-

obvious insights
in soccer.

k-NN, SVM

To extract the features
of pass location, they

used heatmap
generation and

achieved an accuracy of
87% in the classification

task.

By incorporating temporal
information, the classification

accuracy can be improved and
also offers specific insights into

situations.

Tracking the
players in

soccer videos.
HOG + SVM

Player detection is
evaluated in terms of

accuracy and achieved
97.7%. Classification
accuracy using k-NN
achieved 93% for 15

classes.

-

Action
classification in
soccer videos

LSTM + RNN

The model achieves a
classification rate of
92% on four types of

activities.

By extracting the features of
various activities, the accuracy of

the classification rate can be
improved.

[66]

[33]

[51]

[87][88][89][90][91][92][93][94] [95][96]

[97][98][99][100]

[101] [102] [103]

[104] [105][106] [107][108]

[109][110][111][112][113]

[114]

[115]

[116]

Studies in Cricket

Refs. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Shot classification
in cricket.

CNN—Gated
Recurrent Unit

It is evaluated in terms of
precision, recall, and F1-

score and achieved
93.40%, 93.10%, and 93%

for 10 types of shots.

By incorporating unorthodox
shots which are played in t20
in the dataset may improve

the testing accuracy.

Detecting the
action of the

bowler in cricket.
VGG16-CNN

It was evaluated in terms of
precision, recall, and F1-
score and the maximum

average accuracy achieved
is 98.6% for 13 classes (13
types of bowling actions).

Training the model with the
dataset of wrong actions can
improve detection accuracy.

Movement
detection of the

batsman in cricket.
Deep-LSTM

The model was evaluated
in terms of mean square

error and achieved a
minimum error of 1.107.

-

Cricket video
summarization.

Gated Recurrent
Neural Network

+ Hybrid
Rotation Forest-

Deep Belief
Networks YOLO

The methodology was
evaluated in terms of
precision, F1-score,

accuracy and achieved
96.82%, 94.83%, and

96.32% for four classes.
YOLO is evaluated on

precision, recall, and F1-
score and achieved 97.1%,

Decision tree classifier
performance is low due to the
existence of a huge number of

trees. Therefore, a small
change in the decision tree
may improve the prediction
accuracy. Extreme Learning

Machines have faced the
problem of overfitting, which

[90]

[98]

[102]

[115]

[116]
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Studies in Cricket

Refs. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

94.4%, and 95.7% for 8
classes.

can be overcome by removing
duplicate data in the dataset.

Prediction of
individual player
performance in

cricket

Efficient
Machine
Learning

Techniques

The proposed algorithm
achieves a classification

accuracy of 93.73% which
is good compared with
traditional classification

algorithms.

Replacing machine learning
techniques with deep learning
techniques may improve the

performance in prediction
even in the case of different
environmental conditions.

Classification of
different batting
shots in cricket.

CNN

The average classification
in terms of precession is

0.80, Recall is 0.79 and F1-
score is 0.79.

To improve the accuracy of
classification, a deep learning
algorithm has to be replaced
with a better neural network.

Outcome
classification task

to create automatic
commentary
generation.

CNN + LSTM
Maximum of 85% of

training accuracy and 74%
validation accuracy

Due to the unavailability of the
standard dataset for the ball
by ball outcome classification
in cricket, the accuracy is not
up to mark. In addition, better
accuracy leads to automatic
commentary generation in

sports.

Detecting the third
umpire decision

and an automated
scoring system in
a cricket game.

CNN + Inception
V3

It holds 94% accuracy in
the Deep Conventional
Neural Network (DCNN)

and 100% in Inception V3
for the classification of

umpire signals to automate
the scoring system of

cricket.

To build an automated
umpiring system based on
computer vision application
and artificial intelligence, the
results obtained in this paper

are more than enough.

Classification of
cricket bowlers
based on their

bowling actions.

CNN

The test set accuracy of the
model is 93.3% which

demonstrates its
classification ability.

The model lacks data for
detecting spin bowlers. As the
dataset is confined to left-arm

bowlers, the model
misclassifies the right-arm

bowlers.

Recognition of
various batting

shots in a cricket
game

Deep-CNN
The proposed models can

recognize a shot being
played with 90% accuracy.

As the model is dependent on
the frame per second of the
video, it fails to recognize

when the frames per second
increases.

Automatic highlight
generation in the

CNN + SVM Mean Average Precision of
72.31%

The proposed method cannot
clear metrics to evaluate the

[107]

[87]

[103]

[105]

[106]

[88]

[104]
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4. Tennis

Worldwide, Tennis has experienced gain a huge popularity. This game need a meticulous analysis to reducing

human errors and extracting several statistics from the game’s visual feed. Automated ball and player tracking

belongs to such class of systems that requires sophisticated algorithms for analysis. The primary data for tennis

are obtained from ball and player tracking systems, such as HawkEye  and TennisSense . The data

from these systems can be used to detect and track the ball/player , visualizing the overall tennis

match  and predicting trajectories of ball landing positions , player activity recognition 

, analyzing the movements of the player and ball , analyzing the player behavior  and predicting the

next shot movement  and real-time tennis swing classification .  Table 4  summarizes various proposed

methodologies to resolve various challenging tasks in tennis with their limitations.

Table 4. Studies in Tennis.

Studies in Cricket

Refs. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

game of cricket. false positives in highlights.

Umpire pose
detection and

classification in
cricket.

SVM
VGG19-Fc2 Player testing

accuracy of 78.21%

Classification and
summarization techniques can
minimize false positives and

false negatives.

Activity recognition
for quality

assessment of
batting shots.

Decision Trees,
k-Nearest

Neighbours, and
SVM.

The proposed method
identifies 20 classes of
batting shots with an

average F1-score of 88%
based on the recorded

movement of data.

To assess the player’s batting
caliber, certain aspects of

batting also need to be
considered, i.e., the position

of the batsman before playing
a shot and the method of

batting shots for a particular
bowling type can be modeled.

Predicting the
outcome of the
cricket match.

k-NN, Naïve
Bayesian, SVM,

and Random
Forest

Achieved an accuracy of
71% upon the statistics of

366 matches.

Imbalance in the dataset is
one of the causes which
produces lower accuracy.

Deep learning methodologies
may give promising results by

training with a dataset that
included added features.

Performance
analysis of the

bowler.

Multiple
regression

Variation in ball speed has
a feeble significance in
influencing the bowling

performance (the p-value
being 0.069). The variance

ratio of the regression
equation to that of the

residuals (F-value) is given
as 3.394 with a

corresponding p-value of
0.015.

-

Predicting the
performance of the

player.

Multilayer
perceptron

Neural Network

The model achieves an
accuracy of 77% on batting
performance and 63% on

bowling performance.

-

[106]

[89]

[109]

[110]

[97]

[108]

[117][118] [119][120]

[121][122][123][124]

[125][126] [127][128][129] [130][131]

[132] [133] [134]

[135] [136]

Studies in Tennis

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics

Limitations and
Remarks

Monitoring and
Analyzing tactics of

YOLOv3 The model achieved an mAP
of 90% with 13 FPS on high-

Using a lightweight
backbone for

[118]
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Studies in Tennis

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics

Limitations and
Remarks

tennis players. resolution images. detection, modules
can improve the

processing speed.

Player action
recognition in

tennis.

Temporal Deep Belief
Network

(Unsupervised
Learning Model)

The accuracy of the
recognition rate is 94.72%

If two different
movements are

similar, then the model
fails to recognize the

current action.

Tennis swing
classification.

SVM, Neural Network,
K-NN, Random

Forest, Decision Tree

Maximum classification
accuracy of 99.72% achieved
using NN with a Recall of 1.

The second-highest
classification accuracy of

99.44% was achieved using
K-NN with a recall of 0.98.

If the play styles of the
players are different
but the patterns are

the same, in that
case, models failed to

classify the current
swing direction.

Player activity
recognition in a
tennis game.

Long Short Term
Memory (LSTM)

The average accuracy of
player activity recognition

based on the historical LSTM
model was 0.95, and that of
the typical LSTM model was

0.70.

The model lacks real-
time learning ability
and requires a large

computing time at the
training stage. The
model also lacks

online learning ability.

Automatic
detection and

classification of
change of direction

from player
tracking data in a

tennis game.

Random Forest
Algorithm

Among all the proposed
methods, model 1 had the

highest F1-score of 0.801, as
well as the smallest rate of
false-negative classification

(3.4%) and average accuracy
of 80.2%

In the case of non-
linear regression

analysis, the
classification

performance of the
proposed model is not

up to the mark.

Prediction of shot
location and type
of shot in a tennis

game.

Generative Adversarial
Network (GAN) (Semi-

Supervised Model)

The performance factor is
measured based on the

minimum distance recorded
between predicted and

ground truth shot location.

The performance of
the model deviates

from the different play
styles as it is trained
on the limited player

dataset.

Analyzing
individual tennis

matches by
capturing spatio-
temporal data for
player and ball
movements.

For data extraction, a
player and ball

tracking system such
as HawkEye is used.

Generation of 1-D space
charts for patterns and point

outcomes to analyze the
player activity.

The performance of
the model deviates

from different
matches, as it was

trained only on limited
tennis matches.

[132]

[136]

[130]

[121]

[127]

[133]
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5. Volleyball

In volleyball, two teams of six players each are placed on either side of a net. Each team attempts to ground a ball

on the opposite team’s court and to score points under the defined rules. So, detecting and analyzing the player

activities , detecting play patterns and classifying tactical behaviors , predicting league

standings , detecting and classifying spiking skills , estimating the pose of the player , tracking the

player , tracking the ball , etc., are the major aspects of volleyball analysis. Predicting the ball trajectory 

in a volleyball game by observing the motion of the setter player has been conducted. Table 5 summarizes various

proposed methodologies to resolve various challenging tasks in volleyball sport with their limitations.

Table 5. Studies in volleyball.

Studies in Tennis

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics

Limitations and
Remarks

Action recognition
in tennis

3-Layered LSTM

The classification accuracies
are as follows: Improves from
84.10 to 88.16% for players
of mixed abilities. Improves
from 81.23 to 84.33% for

amateurs and from 87.82 to
89.42% for professionals,

when trained using the entire
dataset.

The detection
accuracy can be

increased by
incorporating spatio-
temporal data and

combining the action
recognition data with

statistical data.

Shot prediction
and player

behavior analysis
in tennis

For data extraction,
player and ball

tracking systems such
as HawkEye are used

and a Dynamic
Bayesian Network for

shot prediction is
used.

By combining factors
(Outside, Left Top, Right Top,

Right Bottom) together,
speed, start location, the

player movement
assessment achieved better

results of 74% AUC.

As the model is
trained on limited data
(only elite players), it
cannot be performed
on ordinary players

across multiple
tournaments.

Ball tracking in
tennis

Two-Layered Data
Association

Evaluation results in terms of
precision, recall, F1-score are
84.39%, 75.81%, 79.87% for

Australian open tennis
matchwa and 82.34%,

67.01%, 73.89% for U.S
open tennis matches.

The proposed method
cannot handle multi-
object tracking and it

is possible to integrate
audio information to
facilitate high-level

analysis of the game.

Highlight extraction
from rocket sports
videos based on
human behavior

analysis.

SVM

The proposed algorithm
achieved an accuracy of

90.7% for tennis videos and
87.6% for badminton videos.

The proposed
algorithm fails to

recognize the player,
as the player is a

deformable object of
which the limbs

perform free
movement during
action recognition.

[131]

[135]

[122]

[134]

[137][138][139] [140][141][142][143]

[144] [145][146] [147]

[148] [149] [31]

Studies in Volleyball

Ref. Problem Statement Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Group activity
recognition by

tracking players.

CNN + Bi-
LSTM

The model achieved an
accuracy of 93.9%.

The model fails to track the
players if the video is taken

from a dynamic camera.
Temporal action localization
can improve the accuracy of
tracking the players in severe

occlusion conditions.

[147]
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6. Hockey/Ice Hockey

Hockey, also known as Field hockey, is an outdoor game played between two teams of 11 players each. These

players use sticks that are curved at the striking end to hit a small and hard ball into their opponent’s goal post. So,

detecting  and tracking the player/hockey ball, recognizing the actions of the player , estimating the

Studies in Volleyball

Ref. Problem Statement Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Recognizing and
classifying player’s

behavior.
SVM

The achieved recognition
rate was 98% for 349

correct samples.
-

Classification of
tactical behaviors in

beach volleyball.
RNN + GRU

The model achieves better
classification results as

prediction accuracies range
from 37% for forecasting

the attack and direction to
60% for the prediction of

success.

By employing a state-of-the-
art method and training on a

proper dataset that has
continuous positional data, it
is possible to predict tactics

behavior and set/match
outcomes.

Motion estimation
for volleyball

Machine Vision
and Classical
particle filter.

Tracking accuracy is 89%
Replacing methods with
deep learning algorithms

gives better results.

Assessing the use of
Inertial

Measurement Units
in the recognition of
different volleyball

actions.

KNN, Naïve
Bayes, SVM

Unweighted Average Recall
of 86.87%

By incorporating different
frequency domain features,
the performance factor can

be improved.

Predicting the ball
trajectory in a

volleyball game by
observing the the

motion of the setter
player.

Neural Network

The proposed method
predicts 0.3 s in advance of

the trajectory of the
volleyball based on the

motion of the setter player.

In the case of predicting the
3D body position data, the

method records a large error.
This can be overcome by

training properly annotated
large data on state-of-art-

methods.

Activity recognition
in beach volleyball

Deep
Convolutional

LSTM

The approach achieved a
classification accuracy of
83.2%, which is superior

compared with other
classification algorithms.

Instead of using wearable
devices, computer vision

architectures can be used to
classify the activities of the

players in volleyball.

Volleyball skills and
tactics analysis

ANN

Evaluated in terms of
Average Relative Error for
10 samples and achieved

0.69%.

-

Group activity
recognition in a
volleyball game

LSTM Group activity recognition of
accuracy of the the
proposed model in
volleyball is 51.1%.

The performance of
architecture is poor because

of the lack of hierarchical
considerations of the

[148]

[141]

[149]

[142]

[31]

[138]

[144]

[139]

[150] [151][152][153]
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pose of the player , classifying and tracking the players of the same team or different teams , referee

gesture analysis  and hockey ball trajectory estimation are the major aspects of hockey sport.

Ice hockey is another similar game to field hockey, with two teams with six players each, wearing skates and

competing on an ice rink. All players aim to propel a vulcanized rubber disk, the puck, past a goal line and into a

net guarded by a goaltender. Ice hockey is gaining huge popularity on international platforms due to its speed and

frequent physical contact. So, detecting/tracking the player , estimating the pose of the player ,

classifying and tracking with different identification the players of the same team or different teams, tracking the ice

hockey puck , and classification of puck possession events  are the major aspects of the ice hockey

sport.  Table 6  summarizes various proposed methodologies to resolve various challenging tasks in hockey/ice

hockey with their limitations.

Table 6. Studies in hockey.

Studies in Volleyball

Ref. Problem Statement Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

individual and group activity
dataset.

[154] [155]

[156][157]

[158][159][160] [161]

[162] [163]

Studies in Hockey

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Detecting the
player in hockey.

SVM, Faster
RCNN, SSD,

YOLO

HD+SVM achieved the best
results in terms of accuracy,

recall, and F1-score with
values of 77.24%, 69.23%,

and 73.02%.

The model failed to detect the
players in occlusion conditions.

Localizing puck
Position and

Event
recognition.

Faster RCNN
Evaluated in terms of AUC

and achieved 73.1%.

Replacing the detection method
with the YOLO series can improve

the performance.

Identification of
players in
hockey.

ResNet +
LSTM

Achieves player
identification accuracy of

over 87% on the split
dataset.

Some of the jersey number
classes such as 1 to 4 are
incorrectly predicted. The

diagonal numbers from 1 to 100
are falsely classified due to the

small number of training
examples.

Activity
recognition in a
hockey game.

LSTM

The proposed model
recognizes the activities
such as free hits, goals,

penalties corners, and long
corners with an accuracy of

98%.

As the proposed model is focused
on spatial features, it does not

recognize activities such as free
hits and long corners as they
appear as similar patterns. By

including temporal features and
incorporating LSTM into the

model, the model is robust to
performance accuracy.

[150]

[162]

[155]

[151]
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7. Badminton

Badminton is one of the most popular racket sports, which includes tactics, techniques, and precise execution

movements. To improve the performance of the player, technology plays a key role in optimizing the training of

players; technology determines the movements of the player  during training and game situations such as with

action recognition , analyzing the performance of player , detecting and tracking the shuttlecock 

. Table 7 summarizes various proposed methodologies to resolve various challenging tasks in badminton

with their limitations.

Table 7. Studies in badminton.

Studies in Hockey

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Pose estimation
and temporal-
based action
recognition in

hockey.

VGG19 +
LiteFlowNet +

CNN

A novel approach was
designed and achieved an
accuracy of 85% for action

recognition.

The architecture is not robust to
abrupt changes in the video, e.g.,

it fails to predict hockey sticks.
Activities such as a goal being

scored, or puck location, are not
recognized.

Action
recognition in ice
hockey using a

player pose
sequence.

CNN+LSTM

The performance of the
model is better in similar

classes such as passing and
shooting. It achieved 90%
parameter reduction and

80% floating-point reduction
on the HARPET dataset.

As the number of hidden units to
LSTM increases, the number of

parameters also increases, which
leads to overfitting and low test

accuracy.

Human activity
recognition in

hockey.
CNN+LSTM

An F1-score of 67% was
calculated for action

recognition on the multi-
labeled imbalanced dataset.

The performance of the model is
poor because of the improper

imbalanced dataset.

Player action
recognition in an
ice hockey game

CNN

The accuracy of the actions
recognized in a hockey
game is 65% and when

similar actions are merged
accuracy rises to 78%.

Pose estimation problems due to
severe occlusions when motions

blur due to the speed of the game
and also due to lack of a proper

dataset to train models, all
causing low accuracy.

[154]

[161]

[152]

[153]

[164]

[165][166][167] [168] [169]

[170][171]

Studies in Badminton

Ref. Problem
Statement

Proposed
Methodology

Precision and Performance
Characteristics

Limitations and
Remarks

Shuttlecock
detection problem

of a badminton
robot.

Tiny YOLOv2 and
YOLOv3

Results show that, compared
with state-of-art methods, the
proposed networks achieved
good accuracy with efficient

computation.

The proposed method
fails to detect different

environmental
conditions. As it uses

the binocular camera to
detect a 2D

shuttlecock, it cannot
detect the 3D

shuttlecock trajectory.

Automated
badminton player

AlexNet+CNN,
GoogleNet+CNN

Recognition of badminton
actions by the linear SVM

The architecture can be
improved by fine-tuning

[169]

[165]
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8. Miscellaneous

Player detection and tracking is the major requirement in athletic sports such as running, swimming , and

cycling. In sports such as table tennis , squash , and golf , ball detection and tracking and player

pose detection  are challenging tasks. In ball-centric sports such as rugby, American football, handball,

baseball, ball/player detection  and tracking ,

analyzing the action of the player , event detection and classification ,

performance analysis of player , referee identification and gesture recognition are the major challenging

tasks. Video highlight generation is a subclass of video summarization  which may be viewed as a

subclass of sports video analysis.  Table 8  summarizes various proposed methodologies to resolve various

challenging tasks in various sports with their limitations.

Studies in Badminton

Ref. Problem
Statement

Proposed
Methodology

Precision and Performance
Characteristics

Limitations and
Remarks

action recognition
in badminton

games.

and SVM classifier for both AlexNet and
GoogleNet using local and

global extractor methods is 82
and 85.7%.

in an end-to-end
manner with a larger
dataset on features
extracted at different

fully connected layers.

Badminton activity
recognition

CNN

Nine different activities were
distinguished: seven badminton

strokes, displacement, and
moments of rest. With

accelerometer data, accurate
estimation was conducted

using CNN with 86% precision.
Accuracy is raised to 99%
when gyroscope data are

combined with accelerometer
data.

Computer vision
techniques can be

employed instead of
sensors.

Classification of
badminton match

images to
recognize the

different actions
were conducted
by the athletes.

AlexNet,
GoogleNet, VGG-

19 + CNN

Significantly, the GoogleNet
model has the highest

accuracy compared to other
models in which only two-hit

actions were falsely classified
as non-hit actions.

The proposed method
classifies the hit and
non-hit actions and it
can be improved by

classifying more
actions in various

sports.

Tracking
shuttlecocks in

badminton

An AdaBoost
algorithm which can
be trained using the

OpenCV Library.

The performance of the
proposed algorithm was

evaluated based on precision
and it achieved an average

precision accuracy of 94.52%
with 10.65 fps.

The accuracy of
tracking shuttlecocks is
enhanced by replacing

state-of-the-art AI
algorithms.

Tactical movement
classification in

badminton
k-Nearest Neighbor

The average accuracy of player
position detection is 96.03 and

97.09% on two halves of a
badminton court.

The unique properties
of application such as
the length of frequent

trajectories or the
dimensions of the
vector space may

improve classification
performance.

[166]

[167]

[170]

[164]

[172][173]

[174] [175][176] [177]

[178]

[179][180][181][182][183][184][185] [186][187][188][189][190][191][192][193][194][195]

[196][197][198][199][200][201][202] [203][204][205][206][207]

[208][209][210]

[211][212][213][214]
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Table 8. Studies in various sports.

Studies in Various Sports

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Beach sports
image recognition
and classification.

CNN
The model achieved a
recognition accuracy of

91%.

Lightweight networks of deep
learning algorithms can
improve the recognition

accuracy and can also be
implemented in real-time

scenarios.

Motion image
segmentation in

the sport of
swimming

GDA + SVM

The performance of the
Symmetric Difference

Algorithm was measured in
terms of recall and achieved

76.2%.

Using advanced optimization
techniques such as Cosine
Annealing Schedulers with

deep learning algorithms may
improve the performance.

Identifying and
recognizing

wrong strokes in
table tennis.

k-NN, SVM,
Naïve Bayes

Performs various ML
algorithms and achieves an
accuracy of 69.93% using

the Naïve Bayes algorithm.

A standard dataset can
improve the accuracy of

recognizing the wrong strokes
in table tennis.

Multi-player
tracking in sports

Cascade Mask
R-CNN

The proposed Deep Player
Identification method

studies the patterns of
jersey number, team class,

and pose-guided partial
feature. To handle player

identity switching, the
method correlates the

coefficients of player ID in
the K-shortest path with ID.
The proposed framework

achieves state-of-art
performance.

When compared with existing
methods, the computation cost

is higher and can be
considered a major drawback
of the proposed framework. To
refine 2D detection, temporal

information needs to be
considered and can be

transferred to tracking against
a real-time performance such

as soccer, basketball, etc.

Individual player
tracking in sports

events.

Deep Neural
Network

Achieved an Area Under
Curve (AUC) of 66%

Tracking by jersey number
recognition may increase the

performance of the model.

Skelton-based
key pose

recognition and
classification in

sports

Boltzmann
machine+CNN

Deep Boltzmann
machine + RNN

The proposed architecture
successfully analyses

feature extraction, motion
attitude model, motion

detection, and behavior
recognition of sports

postures.

The architecture is bound to
individual-oriented sports and
can be further implemented on
group-based sports, in case of

challenges such as severe
occlusion, misdetection due to

failure in blob detection in
object tracking.

[185]

[173]

[174]

[186]

[189]

[178]



Traditional Computer-Vision Methods Implemented in Sports | Encyclopedia.pub

https://encyclopedia.pub/entry/23036 19/41

Studies in Various Sports

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

Human action
recognition and
classification in

sports

VGG 16 + RNN

The proposed method
achieved an accuracy of

92% for ten types of sports
classification.

The model fails in the case of
scaling up the dataset for larger

classification which shows
ambiguity between players and

similar environmental
conditions. Football, Hockey;
Tennis, Badminton; Skiing,

Snowboarding; these pairs of
classes have similar

environmental features; thus, it
is only possible to separate

them based on relevant actions
which can be achieved by
state-of-the-art methods.

Replay and key
event detection
for sports video
summarization

Extreme
Learning

Machine (ELM)

The framework is evaluated
on a dataset that consists of

20 videos of four different
sports categories. It
achieves an average

accuracy of 95.8%, which
illustrates the significance of
the method in terms of key-
event and replay detection
for video summarization.

The performance of the
proposed method drops in the

case of the absence of a
gradual transition of a replay

segment. It can be extended by
incorporating artificial

intelligence techniques.

Event detection in
sports videos for

unstructured
environments
with arbitrary

camera angles.

Mask RCNN +
LSTM

The proposed method is
accurate in unsupervised
player extraction, which is
used for precise temporal

segmentation of rally
scenes. It is also robust to

noise in the form of camera
shaking and occlusions.

It can be extended to doubles
games with fine-grained action

recognition for detecting
various kinds of shots in an

unstructured video and it can
be extended to analyze videos

of games such as cricket,
soccer, etc.

Human motion
quality

assessment in
complex motion

scenarios.

3-Dimensional
CNN

Achieved an accuracy of
81% on the MS-COCO

dataset.

Instead of the Stochastic
Gradient Descent technique for
learning rate, using the Cosine
annealing scheduler technique
may improve the performance.

Court detection
using markers,

player detection,
and tracking

using a drone.

Template
Matching +

Particle Filter

The proposed method
achieves better accuracy
(94%) in the case of two

overlapping players

As the overlapping of players,
increases the accuracy of

detection and tracking
decreases due to similar

features of players on the same
team. The method uses a

template matching algorithm,

[199]

[212]

[203]

[204]

[187]
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9. Overview of Machine Learning/Deep Learning Techniques

There are multiple ways to classify, detect, and track objects to analyze the semantic levels involved in various

sports. They pave the way for player localization, jersey number recognition, event classification and trajectory

forecasting of the ball in a sports video with a much better interpretation of an image as a whole.

The selected AI algorithm is better if it is tested and benchmarked on different data. To evaluate the robustness of

AI algorithms, some metrics are required which measure the performance of particular AI algorithms to enable

better selection. Figure 1 depicts the road map of the machine learning algorithms’ general information, methods,

and evaluation criteria for a particular task and required libraries/tools for training the model. Figure 2 depicts the

roadmap of the deep learning algorithm selection, training, and evaluation criteria for a particular task and required

libraries/tools for training the model. Figure 3 shows taxonomy of various deep learning techniques of classification

, detection  and prediction  algorithms, unsupervised learning ,

tracking , and trajectory prediction . Since

various tasks in sports such as classification/detection, tracking, and trajectory prediction show great advantages in

various sports. A bi-layered parallel training architecture in distributed computing environments was introduced in

, which discusses the time-consuming training process of large-scale deep learning algorithms.

Studies in Various Sports

Ref. Problem
Statement

Proposed
Methodology

Precision and
Performance

Characteristics
Limitations and Remarks

which can be replaced with a
deep learning-based state-of-
art algorithm to acquire better

results.

Target tracking
theory and
analyses its

advantages in
video tracking.

Mean Shift +
Particle Filter

Achieves better tracking
accuracy compared to

existing algorithms such as
TMS and CMS algorithms.

If the target scales change then
the tracking of players fails due

to the unchanged window of
the mean-shift algorithm.

Furthermore, it cannot track
objects which are similar to the

background color. The
accuracy of tracking players

can be improved by replacing
them with artificial intelligence

algorithms.

Automatically
generating a
summary of
sports video.

2D CNN +
LSTM

Describes a novel method
for automatic

summarization of user-
generated sports videos
and demonstrated the

results for Japanese fencing
videos.

The architecture can be
improved by fine-tuning in an

end-to-end manner with a
larger dataset for illustrating

potential performance and also
to evaluate in the context of a

wider variety of sports.

Action
Recognition and

classification
SVM

Achieved an accuracy of
59.47% on the HMDB 51

dataset.

In cases where the object takes
up most of the frame, the
human detector cannot

completely cover the body of
the object. This leads to the

system missing movements of
body parts such as hands and

arms. In addition, recognition of
similar movements is a

challenge for this architecture.

[188]

[211]

[202]

[215][216][217][218][219][220] [221] [222][223][224] [225][226]

[227][228][229][230][231][232][233][234][235][236] [237][238][239][240][241][242][243][244]

[245]
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Figure 1. Block diagram of the road map to machine learning architecture selection and training.
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Figure 2. Block diagram of the road map to deep learning architecture selection and training.

Figure 3. Overview of deep learning algorithms of classification/detection, tracking and trajectory prediction.
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