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Emotion recognition can be formulated as a problem where some source produces several streams of data

(features) of various modalities (e.g., audio and video), each with its own distribution, and the goal is to estimate

the distributions and map them onto the source.

audio–visual speech  emotion recognition  children

1. Introduction

Emotions play an important role in a person’s life from its very beginning to the end. Understanding emotions

becomes indispensable for people’s daily activities, in organizing adaptive behavior and determining the functional

state of the organism, in human–computer interaction (HCI), etc. In order to provide natural and user-adaptable

interaction, HCI systems need to recognize a person’s emotions automatically. In the last ten to twenty years,

improving speech emotion recognition has been seen as a key factor in improving the performance of HCI

systems. While most research has focused on emotion recognition in adult speech , significantly less research

has focused on emotion recognition in children’s speech . That is because large corpora of children’s speech,

especially audio–visual speech, are still not publicly available, and this forces researchers to focus on emotion

recognition in adult speech. Nevertheless, children are potentially the largest class of users of most HCI

applications, especially in education and entertainment (edutainment) . Therefore, it is important to understand

how emotions are expressed by children and whether they can be automatically recognized.

Creating automatic emotion recognition systems in a person’s speech is not trivial, especially considering the

differences in acoustic features for different genders , age groups , languages , cultures , and

developmental  features. For example, in , it is reported that the accuracies of speech emotion recognition

are “93.3%, 89.4%, and 83.3% for male, female and child utterances respectively”. The lower accuracy of emotion

recognition in children’s speech may be due to the fact that children interact with the computer differently than

adults, as they are still in the process of learning social and conversational interaction linguistic rules. It is

highlighted in  that the main aim of emotion recognition in conversation (ERC) systems is to correctly identify the

emotions in the speakers’ utterances during the conversation. ERC helps to understand the emotions and

intentions of users and to develop engaging, interactive, and empathetic HCI systems. The input data for a

multimodal ERC is information from different modalities for each utterance, such as audio–visual speech and facial

expressions, and the model leverages these data to generate accurate predictions of emotions for each utterance.

In , it was found that in the case of audio–visual recognition of emotions in voice, speech (text), and facial

expressions, the facial modality provides recognition of 55% of emotional content, the voice modality provides
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38%, and the textual modality provides the remaining 7%. The last is the motivation to use audio–visual speech

emotion recognition.

There are few studies on multimodal emotion recognition in children, and even fewer studies have been performed

on automatic children’s audio–visual emotion recognition. Due to the small size of the available datasets, the main

approach was to use traditional machine learning (ML) techniques. The authors of  mentioned the following most

popular ML-based classifiers: Support Vector Machine, Gaussian Mixture Model, Random Forest, K-Nearest

Neighbors, and Artificial Neural Network, with the Support Vector Machine (SVM) classifier being employed in the

majority of ML-based affective computing tasks. Recently, there has been a growing focus on automatic methods

of emotion recognition in audio–visual speech. This is primarily driven by advancements in machine learning and

Deep Learning , due to the presence of publicly available datasets of emotional audio–visual speech, and the

availability of powerful computing resources .

2. Audio–Visual Emotion Recognition

Emotion recognition can be formulated as a problem where some source produces several streams of data

(features) of various modalities (e.g., audio and video), each with its own distribution, and the goal is to estimate

the distributions and map them onto the source. That, naturally, poses several questions that ought to be answered

when building an emotion recognition system: which modalities are selected and represented, how the modalities

are mapped on each other, and how the joint representations are mapped onto the sources of the distributions.

It has been shown that regardless of the model and representations, multimodal approaches virtually always

outperform unimodal ones , i.e., adding another modality can only benefit the performance. While this may seem

obvious, the notion actually relies on the fact that, in the worst-case scenario, a model is able to learn an identity

mapping for the driving modality and disregard the other one. However, as has been shown in practice, it is rarely

the case that additional modalities carry no valuable information. As for the selection of modalities, the most

common ones in the literature are images (or sequences of images, i.e., video), audio, and text.

Representation is one of the key concepts in machine learning . While the task of machine learning imposes a

number of limitations on the representations of data, such as smoothness, temporal and spatial coherence, over

the years, a bevy of various representations have been used to solve various machine learning problems, and

while some are more common than the other, there is no clear rule for choosing the best representation. Traditional

machine learning algorithms rely on the representation of the input being a feature and learn a classifier on top of

that . Meanwhile, the most agile modern models attempt to learn not only the representations but also the

architecture and the hyperparameters of the model . Both extremes, however, have several issues. The

traditional approach lacks the capability to discover deep, latent features and is mostly unable to achieve high

efficiency associated with learning hierarchical and spatial-temporal relationships within feature sets, and since

there is no space to learn cross-modal relationships, multimodal models either rely on some sort of decision-level

fusion or expert heuristics for joint representations. The end-to-end approach, on the other hand, has a high

computational cost and requires a precise, structured approach to training . With those limitations, most of the

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]



Audio–Visual Emotion Recognition | Encyclopedia.pub

https://encyclopedia.pub/entry/51817 3/9

-

-

-

-

modern models take reasonably preprocessed input data, then attempt to learn their efficient representations,

including joint representations, and finally learn to classify those representations.

There are several ways to present audio data to a model. The most common include :

Waveform/raw audio, seldom used outside of end-to-end models, is simply raw data, meaning the model has to

learn efficient representations from scratch;

Acoustic features such as energy, pitch, loudness, zero-crossing rate, often utilized in traditional models, while

allowing for simple and compact models, are mostly independent by design and prevent a model from learning

additional latent features;

A spectrogram or a mel-spectrogram, which shares some similar issues with raw audio, has found its way into

many models due to extensive research into convolutional neural networks, since, being presented as an image,

it enables learning efficient representations as shown in various practical applications;

Mel-Frequency Cepstral Coefficients, which represent the short-term power spectrum of a sound—very

commonly used as they provide a compact but informative representation.

In , a relatively recent example of representation learning was proposed—a large-scale self-supervised pre-

trained WavLM model for speech processing. This model, which is a transformer encoder, efficiently encodes audio

features for classification and is trained on a large dataset. The frozen encoder can then be utilized as a feature

extractor for general purpose speech processing.

For image processing, the traditional approaches are extremely computationally expensive. For example, when a

raw image is processed through a fully connected neural network, the network has to treat each pixel as an

individual input and learn to extract relevant features from all locations within the image. In contrast, a convolutional

neural network (CNN)  can learn to recognize patterns in an image regardless of where they are located, using

shared weights across the entire image and reducing the number of parameters required. By design, CNNs learn

hierarchical representations of the raw input data and, due to the shown efficiency of this approach, this is the most

common approach for the representation of visual data. However, while a static image is a common input for a

variety of computed vision problems, there is also a large field of problems concerned with sequences of images,

i.e., video. Since, for most of the practical tasks, there are strong relationships between consecutive frames of the

input video. It is natural that efficient representations of those relationships are key for achieving high performance.

For example, optical flow is a technique used in computer vision that enables one to recognize and track

movement patterns in video footage . Another option to employ an implementation of a recurrent neural network

(RNN), for example a long short-term memory (LSTM) network or a convolutional RNN, in which case a network is

able to collect global context and produce representations enhanced with those shared latent features . Another

relatively recent approach is to implement a 3D CNN , where the temporal dimension is added to both the input

tensor and the filters. While the idea of considering a sequence of images as just another dimension of the input
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tensor is relatively natural, the significant increase in the number of weights presents the need for a large amount

of training video data and incurs a high computational cost. However, as the CNN architectures for image

processing became highly optimized and somewhat larger video datasets have become available, this approach

became legitimately viable.

The key concept for multimodal classification is the fusion of modalities. Though earlier models relied on unimodal

classification and consecutive ensemble learning for decision-level fusion such as averaging, voting, and weighted

sum, it was quickly discovered that both the redundancy of features between modalities and latent cross-modal

relationships can be utilized to achieve higher performance . Another traditional approach is to implement an

early fusion. While some of the works propose the fusion of modalities at the input data level , the most common

approach is to combine modalities upon feature extraction, relying on some sort of heuristics . In modern

research, fusion is applied somewhere between the feature extraction and the decision level with the goal of

learning efficient joint representations to both eliminate the redundancy in order to reduce the computational cost,

and to align modalities to take advantage of cross-modal relationships.

There are several strategies for this kind of intermediate fusion, but the most common technique is to implement

fusion via an attention mechanism . This is a method to focus on the most relevant information from each

modality, to determine which parts of each modality’s input should be given greater focus when making a

prediction, and selecting the most important features from each modality and combining them in a meaningful way.

In a more general sense, the attention technique can be understood from the distinction between soft and hard

attention. To emulate human perception and reduce computations, ideally, a model should be able to ignore the

clutter in the input data and attend only to the meaningful parts  sequentially and aggregate information over

time—this approach would implement so-called hard attention. However, to achieve that, it would require the model

to make choices where to look at and they are difficult to represent as differentiable functions which would be

required for the most conventional techniques for training. Requiring a model to be differentiable means that the

model is simply able to associate more importance with certain parts of the input data—this approach is called soft

attention.

Another informative way to designate attention techniques is to focus on the dimensions across which they are

applied. Though some terminology may be used interchangeably in the literature, the more common ones include:

Channel attention—as channels of feature maps are often considered feature detectors, it attempts to select

more relevant features for the task ;

Spatial attention—in the cases with multidimensional input data such as images, it attends to inter-spatial

relationship of features ;

Temporal attention—though the temporal dimension can sometimes be considered simply as another dimension

of input data, in practice it might be beneficial to view it separately and apply different logic to it, depending on

the task ;
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- Cross-attention—mostly utilized in the cases with multiple modalities to learn relationships between modalities;

since different modalities often have different dimensions, the modalities cannot be viewed as just another

dimension of the input tensor, thus requiring a different approach from simply increasing the dimension of the

attention maps; can be used to combine information from different modalities, in which case it is said to

implement the fusion of modalities .

The authors of  suggested that applying attention along the input dimensions separately achieves lower

computational and parameter overhead compared to computing attention maps with the same dimensions as the

input. The authors of  proposed the “Squeeze-and-Excitation” block, an architectural unit that explicitly models

interdependencies between channels and recalibrates feature maps channel-wise. The authors of  presented a

self-attention mechanism for CNN to capture long-range interactions between features, which, in modern research,

is mostly applied to sequence modeling and generative modeling tasks, they show that they can improve the

performance of a model by increasing the number of feature maps by concatenating the feature maps with

multihead attention maps. The authors of  implemented cross-attention for multimodal emotion recognition from

audio and text modalities where the features from the audio encoder attend to the features from the text encoder

and vice versa to highlight the most relevant features for emotion recognition. Though the features from those two

modalities are eventually concatenated before passing them to the classifier, the attention block does not explicitly

implement a fusion of modalities and is rather an example of late fusion. The authors of  proposed a universal

split-attention block for the fusion of modalities where the attention block explicitly fuses features from different

modalities and can be both placed at an arbitrary stage of a network and repeated multiple times across the

network.

After the feature maps are generated by a network, the final step is to classify the sample into one of the target

categories. The most common approach is to map the feature maps onto scalar values (flatten the feature maps)

and present the output as a scalar vector so that it can be presented to a fully connected network which is trained

to classify the input into one of the target categories, usually by a SoftMax layer with the number of neurons equal

to the number of target classes . Even though this approach is utilized in most of the modern models, flattening

of the feature maps effectively discards the spatial and temporal relationships. To investigate some of those issues,

the authors of  suggested generating so-called “class activation maps”, where the class activation map points to

the segments of the input image which the network considers discriminative to detect the target class. Since the

outcome of this procedure can encapsulate the spatial and temporal relationships between the input and the

feature maps, this information can also be employed for classification.
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