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Drones are small and low-cost unmanned aerial vehicles (UAVs). With the decrease in the cost and size of drones in recent

years, their number has also increased exponentially. As such, the concerns regarding security aspects that are raised by

their presence are also becoming more serious.

drone  UAV  RF methods  detection system  defense system

1. Introduction

Technical innovations continue to manifest at an ever-increasing speed, causing fast and drastic changes to modern society.

These changes, driven by the possibilities offered by new technologies, affect citizens, governments, and all public and

private industry sectors.

As a result, the development of small, low-cost unmanned aerial vehicles (UAVs), commonly known as drones, has resulted in

an ever-increasing number of these devices being utilized in a variety of applications . UAVs have introduced new

participants in aviation, quickly evolving beyond their military origin to become powerful business tools .

Applications of UAVs range from recreation to commercial and military applications, including enjoyment, hobbies, games with

drones, homemade entertainment videos, recreational movies , low altitude flying base stations , and the operation of

UAVs for military purposes .

2. The Necessity of Drone Detection and Defense Systems:
Incidents and Regulations

The drone industry’s rapid rise has outpaced the rules for safe and secure drone operation, making them a symbol of illegal

and destructive terror and crimes .

Drones have gained attention as a threat to safety and security since their entrance into civilian technology, which has fueled

the development of anti-drone (or counter-drone) technologies. Anti-drone systems are designed to protect against drone

accidents or terrorism, but they will need to evolve in order to deal with future drone flight systems .

UAVs have been used in a variety of military actions. Non-military UAVs have been accused of endangering airplanes, as well

as persons and property on the ground. Due to the potential of an ingested drone to quickly damage an aircraft engine ,

safety concerns have been raised. Multiple near-misses and verified collisions have occurred involving hobbyist UAV pilots

operating when violating the aviation safety standards .

3. Drone Detection and Defense Systems: Classification, Sensors,
Countermeasures

3.1. Classification of Drone Detection and Defense Systems
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Firstly, it is necessary to classify drone detection and defense systems (DDDSs) in order to understand their capabilities, as it

is summarized in Table 1.

Table 1. Classification of DDDSs.

3.2. Classification of Detection Sensors

All of the types of sensors that are currently used in DDDS present specific advantages and limitations and, as a direct

consequence, such a system must incorporate more sensors of different types in order to achieve a higher detection rate .

The different pros and cons for each category are summarized in Table 2.

Table 2. Pros and cons of sensors used in DDDSs.
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mobile
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systems resemble rifles 

UAV-based Systems designed to be mounted on unmanned aerial vehicles (UAVs) 
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Acoustic

Covers the spectrum of 20 Hz–20

kHz;

Acoustic signature library could be

updated easily from flight to flight;
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associated with other types of

sensors.

Limited range;
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Susceptible to decoys.

Imaging Covers all of the visible and IR

spectrum (3 MHz–300 GHz);

IR cameras could operate in cloudy

weather and in day or night;

Could be assisted by computer-

vision technologies.

Provides 2D images;

Limited performances by

weather conditions and

background temperature;

Dependent of georeference data
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4. Drone Detection and Defense Systems Based on RF Methods
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Type Pros Cons References
LoS is required.

Radar

Bandwidth used: 3 MHz–300 GHz;

Could operate in all weather and

day/night conditions;

Offers information regarding the

velocity of the target;

Can recognize micro-Doppler

signatures (MDS)

Offers high coverage;

Good accuracy;

Compact and high mobile, required

for tactical applications;

High reliability.

Large radar cross-section is

desired;

Difficult to differentiate UAVs

from birds;

Limited performance for low

altitudes and speeds (death

cone);

Could interfere easily with small

objects, especially birds;

LoS is required;

High cost.

Radio
Frequency

(RF)

Capturing the communication

spectrum and signals UAV and

operators;

Low complexity and easy to

implement;

Could operate in all weather and

day/night conditions;

Easier to improve due to modular

implementation of receivers and

digital signal processing units used

in implementation;

Possibility to localize the pilot.

Knowledge regarding UAV

communication specifications

(e.g., frequency bands,

modulations, etc.) is required;

Difficult to accurately determine

AoA;

Difficult to use in urban areas

due to fading and multipath

phenomena;

Vulnerable to malicious or illegal

modified RF that will exceed

receiver capabilities.
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methods, by means of transmitting strong enough jamming signals that can interrupt the communication between the drone

and its operator.

Usually, drones operate on different frequencies, but most commercial drones operate in Industrial, Scientific, and Medical

(ISM) frequency bands of 433 MHz and 2.4/5.8 GHz. The simple power detection in these bands will not work due to the

presence of other legitimate users in the same geographical area. Therefore, most of the modern RF detection systems

provide the detection and identification of the special and unique signals that are generated by the UAV or the data protocols

implemented in a UAV.

There are two main functions that are necessary for the detection of the drones, as follows: The identification of the presence

of the drones by scanning the frequency spectrum and localization of the drones. The annihilation function, which is

necessary in order to allow the defense against the detected drones, can be performed by means of RF jamming, in order to

interrupt the communication between the drones and their operators. Table 3 summarizes the main elements regarding the

implementation of such systems. 

Table 3. RF-based drone detection and defense systems.
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One of the challenges that is faced when implementing a DDDS is the ability to identify and, in a further step, to annihilate not

only one, but several different target drones. In recent years, many applications have used multiple drones , therefore,

such a feature becomes an important characteristic for a DDDS. Depending on the sensors that are used in the system, the

possibility of detecting several target drones may or may not exist. A few examples of systems that include such a feature

exist in the literature. In , algorithms are developed in order to allow multi-UAV detection using video streams. In ,

an RF-based deep learning (DL) algorithm is proposed for performing multiple drone detection. The possibility of a

simultaneous annihilation of several drones is an even more challenging task. Electromagnetic pulses (EMP) have been

proposed as a possible solution for defense against drone swarms . RF jamming performed using antenna arrays could

also generate, by means of signal processing methods (beamforming), multiple beams that could be targeted towards multiple

target drones.

Another challenge that a DDDS would have to face, especially if the area in which the system is installed is a residential area,

and there are several households in the close neighborhood, is to avoid interference or damage to nearby equipment (in the

case of RF jamming and EMP) and to respect the privacy of the nearby neighbors (in the case of imaging sensors). In the

case of RF jamming, this could be solved if the antennas that are used or the beams, in the case of using a beamforming

approach, are very directive and targeted directly towards the target drone(s).

6. DronEnd Detection and Defense System

The goal of the DronEnd ground defense system is to secure a certain area against the unauthorized presence of drones. In

order to achieve this goal, the DronEnd system scans the RF spectrum in order to detect the presence of the drones in the

supervised area, identifies the location of the drone by means of AoA algorithms, and annihilates the drone by using RF

jamming methods. The block diagram of the implemented DronEnd ground defense system is presented in Figure 1.

Figure 1. Block diagram of the DronEnd ground defense system.
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A first step required for detecting the presence of a drone in the case of RF-based drone defense systems is to monitor the

radio spectrum through a spectrum sensing process in order to identify the signals that are transmitted by the drone. For the

implementation of the spectrum sensing process in the DronEnd system, spectrum sensing algorithms based on the energy

detection method have been used. Algorithms, such as 3EED  and 3EED with an adaptive threshold , that were

previously developed, provide improved performance compared to the classical energy detection (CED)  algorithm and

were used to identify the presence of the drones in the monitored area. The above-mentioned algorithms were implemented

on SDR platforms from the USRP family (USRP X310 (Ettus Research, Santa Clara, CA, USA)  equipped with Twin-RX

RF Daugterboards (Ettus Research, Santa Clara, CA, USA) , 10–6000 MHz frequency range). 

6.2. Localization of the Drone Using AoA Algorithms

Once the frequency that is used by the drone to communicate has been identified, a second necessary step is to obtain

information about the position of the drone. This step was performed using AoA algorithms for detecting the angle of incidence

of the detected RF signal. Such algorithms exploit the phase difference of the signals that are received from the drone using a

multi-antenna system. The SDR platform that was used as the hardware for providing the RF receive front-end was the USRP

X310 , on which two Twin-RX RF modules  were mounted (covered frequency range of 10–6000 MHz, instantaneous

bandwidth 80 MHz). 

6.3. Annihilation of the Drone Using RF Jamming

A final step is to transmit a jamming signal to the identified target drone in order to disrupt the communication between the

drone and its operator. As the jamming signal should only be transmitted in the direction of the target drone, in order to avoid

interference with other equipment in the area, a directional antenna was used for the jamming operation. 

6.4. Conclusion

To conclude, the main novel elements that are introduced by the DronEnd system, when compared to other drone detection

and defense systems based on RF methods, can be summarized as follows:

Incorporates all of the three functions (identification, localization, and annihilation) that are necessary for a drone detection

and defense system in an integrated and scalable platform, which can be reconfigured depending on the requirements of

different use cases;

Includes an agile and accurate identification subsystem, based on improved spectrum sensing algorithms, which performs

a real-time identification of the signals that are transmitted by the drone and, moreover, allows a dynamic tracking of the

signal transmitted by the drone, even when the transmit frequency is changed;

Annihilates the detected drone by means of jamming, avoiding at the same time significant interference with nearby

devices, as a directional antenna, targeted directly towards the target drone using a motorized antenna mount, is used.
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