

Metal Nanomaterials and Hydrolytic Enzyme-Based Formulations

Subjects: **Microbiology**

Contributor: Ilya Lyagin , Aysel Aslanli , Maksim Domnin , Nikolay Stepanov , Olga Senko , Olga Maslova , Elena Efremenko

Combination of metals and enzymes as effective antifungal agents is currently being conducted due to the growing antifungal resistance problem. Metals are attracting special attention due to the wide variety of ligands that can be used for them, including chemically synthesized and naturally obtained variants as a result of the so-called "green synthesis". The main mechanism of the antifungal action of metals is the triggering of the generation and accumulation of reactive oxygen species (ROS). Further action of ROS on various biomolecules is nonspecific. Various hydrolytic enzymes exhibit antifungal properties by affecting the structural elements of fungal cells (cell walls, membranes), fungal quorum sensing molecules, fungal own protective agents (mycotoxins and antibiotics), and proteins responsible for the adhesion and formation of stable, highly concentrated populations in the form of biofilms.

green synthesis

MOFs

amyloid proteins

prionase

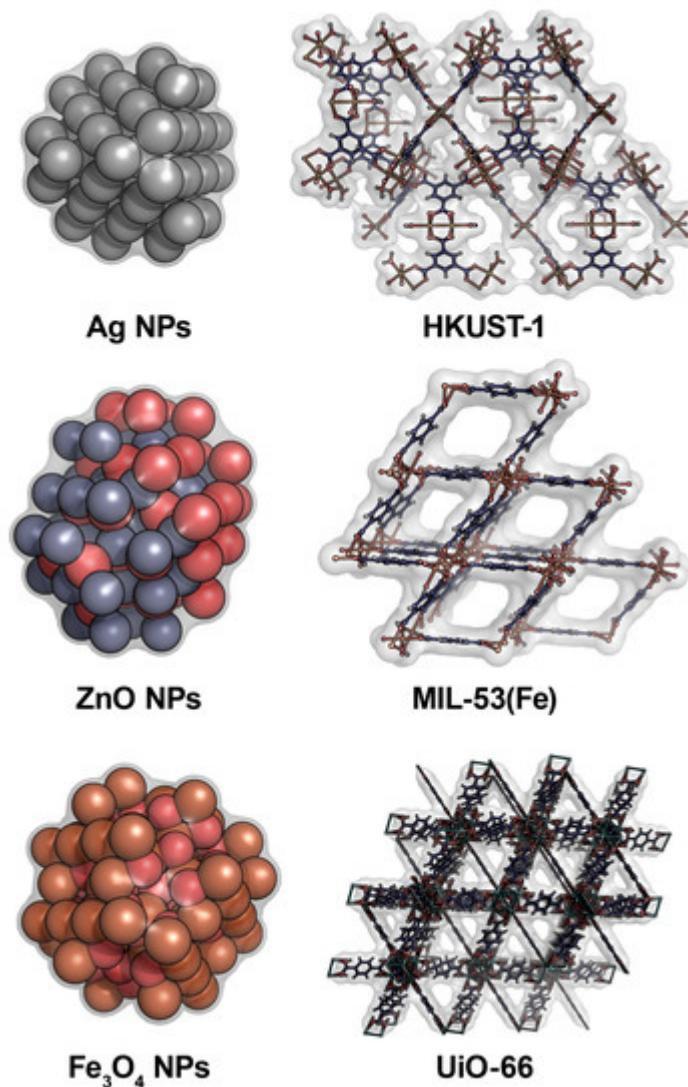
mycotoxins

growth inhibition

1. Introduction

The accumulation of information about the role that microscopic fungi can play in the development of a number of negative processes affecting human health [1][2][3] has led to increasing interest in antifungals that can control and reduce the growth, as well as the metabolic activity, of these biological objects, especially those associated with pathogens [4]. The seriousness of these tasks is increasing due to the fact that in some cases, fungal cells may develop resistance to the chemical formulations used against them [5][6][7].

A number of current scientific studies are related to the development of effective antifungals [8]. Among the new trends in the development of effective antifungals, the prospects of a possible combination of various chemical compounds [7] with different mechanisms of action on fungal cells are being considered. This approach can enable researchers to overcome the development of adaptive processes in fungi and, possibly, reduce the doses of the substances used, increasing the effectiveness of their action in such combinations. When implementing such a combined approach to suppressing the growth and metabolic activity of fungi, the main question arises about what is better to combine with what, and what may be unpromising. One of the possible answers to this question is based on the use of metal nanomaterials such as metal-nanoparticles, metal-organic frameworks, etc., to which no resistance is formed by most microorganisms since the mechanism of suppression of biological processes is primarily associated with the generation of reactive oxygen species (ROS) in the cells. Metals such as Ag, Cu, Fe, Zn, Se, Ni, Au, Zr, Ce, Ti, and Pd have been studied in regard to compounds possessing antifungal activity [9][10][11]


[12]. At the same time, current scientific research on the antifungal properties of metals is mainly focused on the study of Ag and Au nanoparticles (NPs) [10][11][12][13][14][15] since the antimicrobial effectiveness of their action has been known for a long time.

Among the various organic synthetic ligands for the metals used in research in this direction, the so-called “green synthesized” metal-containing NPs should be noted. These “green synthesized” metal-containing NPs are formed inside the cells of microorganisms (bacteria, fungus, yeast) *in vivo* or using plant extracts, polysaccharides of phototrophic microorganisms, and extracellular enzymes of mycelial fungi [10][14][15][16][17]. “Green synthesis” is an environmentally friendly synthesis technique that avoids the formation of undesired by-products and costs less. Moreover, it was found that “green synthesis” makes it possible to obtain NPs with identical antifungal properties compared to similar chemically synthesized metal-containing compounds that are, in some cases, superior to them [17].

It is known that the combination of metal NPs with known chemical fungicides makes it possible to reduce the minimum inhibitory concentration (MIC) of the latter by more than eight times [17]. However, despite this researchers decided to consider the possibility of combining metal-containing compounds with biological molecules having catalytic properties, in particular, with various enzymes exhibiting antifungal activity instead of chemically synthesized fungicides. It has been previously shown that the efficiency of the use of metal NPs can be increased by combining them with cyclic peptides that exhibit antifungal properties [18]. Unlike peptides that exhibit antimicrobial activity, the enzymes have catalytic activity [19], which allows them not just to trigger destructive processes against fungi but to repeatedly participate in these acts of biocatalysis, deepening antifungal processes. In addition, a wide substrate range of action of the enzymes themselves allows researchers to consider the possibility of not only their destructive activity against fungal cells but also against the most important fungal molecules involved in the formation of their quorum sensing (QS) and adhesion [20] and molecules that ensure their own safety (antibiotics [21] and mycotoxins [22]).

2. Antifungal Agents Based on Metal Nanoparticles, Metal–Organic Frameworks and Their Composites

Multiple antifungal agents have been developed to date on the basis of metal nanoparticles (NPs) and/or metal–organic frameworks (MOFs) ([11][12][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37], Figure 1).

Figure 1. Some representative metal NPs and MOFs with antifungal activities. Crystal structures of Ag (1741252), ZnO (13950), Fe₃O₄ (1612598), HKUST-1 (2091261), MIL-53-Fe (2088536), and UiO-66 (2054314) were obtained from CCDC, then expanded in Mercury (v.4.2.0, CCDC, Cambridge, UK) and visualized in PyMOL (v.1.7.6, Schrödinger Inc., New York, NY, USA). Water-accessible molecular surface is indicated by light grey while atoms are colored by element: Ag—grey, Zn—slate, O—red, Fe—orange, C—deep blue, H—white, Zr—cyan.

Table 1. Antifungals based on metal nanoparticles (NPs), metal–organic frameworks (MOFs), and their composites

*

Antifungal Agent [Reference]	Target of Action	Antifungal Activity	Efficiency of Antifungal Action
ZrO ₂ -Ag ₂ O (14–42 nm) [23]	<i>Candida albicans</i> , <i>C. dubliniensis</i> , <i>C. glabrata</i> , <i>C. tropicalis</i>	The growth rate inhibition	89–97% inhibition

Antifungal Agent [Reference]	Target of Action	Antifungal Activity	Efficiency of Antifungal Action
WS ₂ /ZnO nano-hybrids [24]	<i>C. albicans</i>	Inhibition of biofilm formation	91% inhibition
CuO@C (36–123 nm) [25]	<i>Alternaria alternata</i> , <i>Fusarium oxysporum</i> , <i>Penicillium digitatum</i> , <i>Rhizopus oryzae</i>	Inhibition of the hydrolytic activity of fungal enzymes used by them for their own metabolism	Inhibition (100 µg/mL) of cellulases and amylases secreted by fungi: 38% and 42% for <i>A. alternata</i> , 39% and 45% for <i>F. oxysporum</i> , 24% and 67% for <i>P. digitatum</i> , and 20% and 24% for <i>R. oryzae</i> , respectively
ZnO NPs [26]	<i>C. albicans</i> , <i>Aspergillus niger</i>	Inhibition of growth	Large enough zone of growth absence (8-9 mm)
ZnO NPs (20–45 nm) [27]	<i>Erythricium salmonicolor</i>	Notable thinning of the hyphae and cell walls, liquefaction of the cytoplasmic content with decrease in presence of a number of vacuoles	Significant inhibition (9–12 mmol/L) of cell growth
ZnO–TiO ₂ NPs (8–33 nm) [28]	<i>A. flavus</i>	High level of ROS production and oxidative stress induction. Treated objects have a lower count of spores and damaged tubular filaments and noticeably thinner hyphae compared to the untreated fungi	Fungicidal inhibition (150 µg/mL) zone is 100 %
ZnO NPs (40–50 nm) [29]	<i>C. albicans</i>	High level of ROS production	MIC = 32–64 µg/mL MFC = 128–512 mg/mL
Fe ₂ O ₃ NPs (10–30 nm) [30]	<i>Trichothecium roseum</i> , <i>Cladosporium herbarum</i> , <i>P. chrysogenum</i> , <i>A. alternata</i> , <i>A. niger</i>	Inhibition of spore germination	MIC = 0.063–0.016 mg/mL
Fe ₃ O ₄ NPs (70 nm) [31]	<i>C. albicans</i>	Inhibition of cell growth and biofilm formation	MIC = 100 ppm MFC = 200 ppm
Cu-BTC (10–20 µm) [32]	<i>C. albicans</i> , <i>A. niger</i> ,	ROS producing, the damage of the cell membrane	Inhibition of <i>C. albicans</i> colonies is 96% by 300 ppm and up to 100% by 500 ppm.

Antifungal Agent [Reference]	Target of Action	Antifungal Activity	Efficiency of Antifungal Action
	<i>A. oryzae</i> , <i>F. oxysporum</i>		Inhibition growth of <i>F. oxysporum</i> and <i>A. oryzae</i> is 30% with 500 ppm. No significant effect on the <i>A. niger</i> growth.
HKUST-1 or HKUST-1 NPs (doped with NPs of Cu(I)) (49–51 nm) [33]	<i>A. niger</i> , <i>F. solani</i> , <i>P. chrysogenum</i>	Appearance of Cu ²⁺ inhibiting of cell growth	100% growth inhibition of <i>F. solani</i> by 750–1000 ppm and <i>P. chrysogenum</i> by 1000 ppm; for <i>A. niger</i> —no inhibition
[Cu ₂ (Glt) ₂ (LIGAND)] (H ₂ O) [34]	<i>C. albicans</i> , <i>A. niger</i> spores	The apoptosis-like fungal cell death, ROS production	50–70% death of <i>C. albicans</i> and 50–80% germination inhibition of <i>A. niger</i> at 2 mg/mL of the MOFs
MIL-53(Fe) and Ag@MIL-53(Fe) composite [35]	<i>A. flavus</i>	Inhibition of cell growth	MIC = 40 µg/mL for the MIL-53(Fe); MIC = 15 µg/mL for the Ag@MIL-53(Fe)
MOF on the basis of Ce and 4,4',4"-nitrilotribenzoic acid [11]	<i>A. flavus</i> , <i>A. niger</i> , <i>Aspergillus terreus</i> , <i>C. albicans</i> , <i>Rhodotorula glutinis</i>	Enzyme-like activity: catalase, superoxide dismutase, and peroxidase	Inhibition efficiency of 93.3–99.3% based on the colony-forming unit method
TiO ₂ co-doped with nitrogen and fluorine (200–300 nm) [12]	<i>F. oxysporum</i>	Peroxidase-like activity, production of ROS under light irradiation	100% inhibition of fungal growth
Fe ₃ O ₄ @MoS ₂ -Ag (~428.9 nm) [36]	<i>C. albicans</i>	Peroxidase-like activity	80% damage of cell membranes
CoZnO/MoS ₂ nanocomposite [37]	<i>A. flavus</i>	Peroxidase-like activity under light irradiation	MIC = 1.8 mg/mL

and systematic review of literature. *Mycopathologia* 2021, 186, 289–298.

3. Raut, A.; Huy, N.T. Rising incidence of mucormycosis in patients with COVID-19: Another challenge for India amidst the second wave? *Lancet Respir. Med.* 2021, 9, e77.

* BTC—1,3,5-benzenetricarboxylate; Glt—glutarate; HKUST-1—type of MOFs composed of [Cu₃(BTC)₂(H₂O)₃]_n; 4. World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, MFC—minimum fungicidal concentrations; MIC—minimum inhibitory concentration; MIL-53(Fe)—type of MOFs Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022; p. composed of [Fe₄(OH)(1,4-benzenedicarboxylate)₄]; LIGAND—1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)ethylene, 48. Available online: <https://www.who.int/publications/item/9789240060241> (accessed on 29 May 2023).

5. Robbins, N.; Caplan, T.; Cowen, L. E. Molecular evolution of antifungal drug resistance. *Annu. Rev. Microbiol.* 2017, 71, 753–775.

3. Enzymes as Antifungal Agents

3.1. Antifungal Enzymes Using Cell Structural Components of Fungi as Substrates

8. WHO. WHO Releases First-Ever List of HEALTH-Threatening Fungi; World Health Organization: Geneva, Switzerland, 2023; <https://www.who.int/news-room/detail/10-05-2023-world-health-organization-releases-first-ever-list-of-health-threatening-fungi>.

Geneva, Switzerland, 2022; Available online: <https://www.who.int/news-room/detail/25-10-2022-who-releases-first-ever-list-of-health-threatening-fungi> (accessed on 30 May 2022).

Proteins involved in formation of biofilms (adhesins, hydrophobins, amyloids)

9. Cruz-Luna, A.R.; Ruiz-Martinez, H.; Vasquez-Lopez, A.; Medina, D.I. Metal nanoparticles as novel antifungal agents for sustainable agriculture: Current advances and future directions. *J. Fungi* 2021, 7, 1033.

10. Dananjaya, S.H.S.; Thao, N.T.; Wijerathna, H.M.S.M.; Lee, J.; Edussuriya, M.; Choi, D.; Kumar, R.S. In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using *Spirulina maxima* polysaccharide. *Process Biochem.* 2020, 92, 138–148.

11. Abdelhamid, H.N.; Mahmoud, G.A.E.; Sharmouk, W. A cerium-based MOFzyme with multi-enzyme-like activity for the disruption and inhibition of fungal recolonization. *J. Mater. Chem. B* 2020, 8, 7548–7556.

12. Mukherjee, K.; Acharya, K.; Biswas, A.; Jana, N.R. TiO₂ nanoparticles co-doped with nitrogen and fluorine as visible-light-activated antifungal agents. *ACS Appl. Nano Mater.* 2020, 3, 2016–2025.

13. Wen, H.; Shi, H.; Jiang, N.; Qiu, J.; Lin, R.; Kou, Y. Antifungal mechanisms of silver nanoparticles on mycotoxin producing rice false smut fungus. *Iscience* 2023, 26, 105763.

14. Malik, M.A.; Batterjee, M.G.; Kamli, M.R.; Alzahrani, K.A.; Danish, E.Y.; Nabi, A. Polyphenol-capped biogenic synthesis of noble metallic silver nanoparticles for antifungal activity against *Candida auris*. *J. Fungi* 2022, 8, 639.

15. Soleimani, R.; Mehrvar, A.; Michaelid, J.; Rezaee, N. Optimization of silver nanoparticle biosynthesis by entomopathogenic fungi and assays of their antimicrobial and antifungal properties. *J. Invertebr. Pathol.* 2022, 190, 107749.

16. Jamdagni, P.; Khatri, P.; Rana, J.S. Green synthesis of zinc oxide nanoparticles using flower extract of *Nyctanthes arbor-tristis* and their antifungal activity. *J. King Saud Univ. Sci.* 2018, 30, 168–175.

recombinant forms of necessary enzymes can be produced in various host cells.

17. Jamdagni, P.; Rana, J.S.; Khatri, P.; Nehra, K. Comparative account of antifungal activity of green and chemically synthesized variety of nanoparticles activities in combination with agricultural fungicides acting oil. *Mycofungi* 2018, 9, 198–208.

The analysis of the structure of the fungal cell wall or involved in the formation of biofilms. The greatest effect was observed in the case of chitinases [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52], among which there were

18. Zou, L.; and Zhao, X. *Minerals*. At the Ysa Aşçı Çemberlitaş, Ümraniye, İstanbul, Turkey. *Antifungal activity of silver nanoparticles synthesized by sonication*. [\[51\]\[53\]](#) *Antifungal activity of silver nanoparticles synthesized by sonication against *Candida albicans* in vitro and in vivo*. *Appl. Microbiol. Biotechnol.* 2021, 105, 3759–3770.

19. Shamraychuk, I.L.; Belyakova, G.A.; Eremina, I.M.; Kurakov, A.V.; Belozersky, M.A.; Dunaevsky, Y.E. *Fungal proteolytic enzymes and their inhibitors as perspective biocides with antifungal action*. [\[54\]\[55\]\[56\]\[57\]\[58\]](#) *Mosc. Univ. Biol. Sci. Bull.* 2020, 75, 97–103.

20. Radchenko, S.A. *Microbiology*. *Antifungal properties of *Candida albicans* in a yeast-like form*. [\[59\]](#) *Microbiology* 2018, 21, 51–58.

21. Baier, F.; Tokuriki, N. *Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily*. *J. Mol. Biol.* 2014, 426, 2442–2456.

22. Lyagin, I.; Efremenko, E. *Enzymes for detoxification of various mycotoxins: Origins and mechanisms of catalytic action*. *Molecules* 2019, 24, 2362.

23. Ayanwale, A.P.; Estrada-Capetillo, B.L.; Reyes-López, S.Y. *Evaluation of antifungal activity by resistant spores*. *Using a complex of lysing enzymes such as Lyticase (a mixture of β-(1-3)-glucan-laminarin-mixed oxide metallic nanocomposite against *Candida* spp. *Processes* 2021, 9, 773.*

24. Bhattacharya, P.; Patel, M.; Pataniya, P.M.; Iyer, B.D.; Sumesh, G.K.; Late, D.J. *Enhanced antifungal activity of this complex induces the partial formation of spheroplasts; Subsequently, the spheroplasts are lysed with the activity of WS2/ZnO nanohybrid against *Candida albicans**. *ACS Biomater. Sci. Eng.* 2020, 6, 6069–6075.

25. Abdelhamid, H.N.; Mahmoud, G.A.E. *Antifungal and nanozyme activities of metal-organic framework-derived *Appl. Organomet. Chem.* 2023, 37, e7011.*

26. Pillai, A.M.; Sivasankaranpillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfari, F.; Rajesh, K.; Kyzas, G.Z. *Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity*. *J. Mol. Struct.* 2020, 1211, 128107.

27. Archilegas-Grijalba, P.A.; Patino-Portela, M.C.; Mosquera-Sánchez, L.P.; Guerrero-Vargas, J.A.; Rodriguez-Paez, J.E. *ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus *Erythricium salmonicolor**. *Appl. Nanosci.* 2017, 7, 225–241.

28. Ilkhechi, N.N.; Mozammel, M.; Khosrourshahi, A.Y. *Antifungal effects of ZnO, TiO₂ and ZnO-TiO₂ nanostructures on *Aspergillus flavus**. *Pestic. Biochem. Phys.* 2021, 176, 104869.

29. Mire, A. *Antifungal activity of ZnO-TiO₂ and Cu-TiO₂ against *Candida albicans**. [\[41\]\[43\]\[52\]](#) *Antifungal activity of ZnO-TiO₂ and Cu-TiO₂ against *Candida albicans**. [\[57\]\[60\]\[61\]](#) *Obtained results obtained in the presence of various metals in the media of their functioning* [\[43\]\[44\]\[47\]\[48\]\[52\]\[57\]\[65\]](#) *such media, the most attractive options are those combinations of enzymes and metals that can significantly increase the effectiveness of the antifungal action of hydrolases*. *Among the metal ions, which in* [\[43\]\[44\]\[47\]\[48\]\[52\]\[57\]\[65\]](#) *the largest number of studies have had a stimulating effect on the activity of hydrolases, Cu⁺* [\[47\]\[48\]](#) *and Ca²⁺* [\[52\]\[57\]\[60\]\[61\]](#) *should be singled out, although their positive effect is not at all unambiguous, and in some cases, they*

30. Parveen, S.; Wani, A.H.; Shah, M.A.; Devi, H.S.; Bhat, M.Y.; Koka, J.A. *Preparation, characterization and antifungal activity of iron oxide nanoparticles*. *Microb. Pathog.* 2018, 115, 287–292.

Oxidoreductases, in particular, peroxidases are standing in second place after hydrolases in popularity among enzymes used as potential antifungal agents [\[66\]\[67\]](#). These enzymes catalyze the oxidation of fungal molecules by reducing hydrogen peroxide (H₂O₂). The limitations in the use of these enzymes as antifungal agents are

31. Goda, D.; F. a. Halibut, F. *et al.* **Monotherapy and drug combination investigating effects of superparamagnetic iron oxide and H₂O₂ on the particles on *Candida albicans* biofilm formation**. *Med. Lab. J.* 2019, **13**, 44–50.

3.2. Enzymes Hydrolyzing Fungal Proteins with Amyloid Characteristics

Antifungal activity of water-stable copper-containing metal-organic frameworks. *R. Soc. Open Sci.* 2017, **4**, 170654.

Special attention should be paid to the fact that yeast and mycelial fungi are able to form amyloids, which are unbranched fibrils consisting of monomers stacked on top of each other and stabilized by intermolecular β -layers.

33. Cells-Arias, V.; Loera-Serna, S.; Beltran, H.I.; Alvarez-Zeledon, J.C.; Garido, E.; Ruiz-Ramos, R. **The fungicidal effect of HKUST-1 on *Aspergillus niger*, *Fusarium solani* and *Penicillium chrysogenum***. *New J. Chem.* 2018, **42**, 5570–5579.

It is known that the specific functions of hydrophobins synthesized by fungi can enhance their pathogenicity. Thus, *A. fumigatus* can cause invasive aspergillosis in patients with weakened

34. Veerana, M.; Kim, H.C.; Mitra, S.; Adhikari, B.C.; Park, G.; Hub, S.; Kim, S.; Kim, Y. **Analysis of immunity due to the amyloid-forming ability of hydrophobin RodA** [\[69\]\[70\]](#). The formation of amyloid by hydrophobin the effects of Cu-MOFs on fungal cell inactivation. *RSC Adv.* 2021, **11**, 1057–1065.

MPG1 in *M. oryzae* contributes to rice pyriculariaosis [\[71\]](#). One of the most well-described examples of amyloid

35. Tella, A.; Ayas, O.; Oktas, H.K.; Söderström, O.; Adimurthy, V.; Oktas, S.; Zengin, V.; Asci, C.; Sengul, G. **Aggregates into Shallow Pore-like Aggregate, O. C. Glycine, characterization and antifungal activity of Fe(III)metal-organic framework and its nano-composite**. *Chem. Afr.* 2020, **3**, 119–126.

It is known that the yeast cells of *C. albicans*, often used in studies of antifungals, also contain proteins with

36. Wei, F.; Cui, X.; Wang, Z.; Dong, C.; Li, J.; Han, X. **Recoverable peroxidase-like Fe₃O₄@MoS₂-amyloid characteristics**. Thus, the proteins As1, As3, and As5 from the ALS-type adhesion family have the ability to Ag nanzyme with enhanced antibacterial ability. *Chem. Eng. J.* 2021, **408**, 127240.

self-aggregation. The presence of an amyloid sequence in the monomers of these proteins leads to the formation

37. Hydrophobin monomer; Tamm, T.; Franks, J.; Shen, J. **Adhesion of Wang, B.; Lin, J.; Liu, B.; Nichols, P.; Chen, S. and impeded ability to form biofilm** [\[73\]\[74\]](#). It is known that Sup6, Hsp11, Hsp50 and Hsp60 proteins, as well as adhesion and aggregation. *AOB Appl. Nanobiotechnol.* 2021, **11**, 4361–4370, due to the presence of an amyloid-forming sequence in their structures [\[75\]\[76\]\[77\]\[78\]](#).

38. Gow, N.A.R.; Latge, J.P.; Munro, C.A. **The fungal cell wall: Structure, biosynthesis, and function**.

Microbiol. Spectr. 2017, **5**, 10–128.

Today, due to their ability to be transmitted from “mother” cells to “daughter” cells, yeast prions are classified as

39. Kuhnscher, A.; Burger, S.; Schmid, P.A.; Rupp, S. **The Interaction of *Candida* spp. Proteins with the Skin, and Chitosan**. *Chitosan* 2011, **5**, 32. Correspondingly [\[79\]](#). The presence of similar conditions for the formation of yeast

prions and common molecular properties with pathogenic human amyloids has now led to the creation of models of 40. Lyagin, I.; Stepanov, N.; Maslova, O.; Senko, O.; Aslanli, A.; Efremenko, E. **Not a mistake but a neurodegenerative diseases based on yeast prions. The methods of their regulation are being investigated in order feature: Promiscuous activity of enzymes meeting mycotoxins**. *Catalysts* 2022, **12**, 1095.

to develop new effective therapeutic agents and approaches to the treatment of diseases associated with prion

41. Li, C.; Li, X.; Bai, G.; Zhang, Y.; Wang, Z. **A chitinase with antifungal activity from naked oat** [\[80\]](#). In this regard, the interest in enzymes capable of hydrolyzing amyloid aggregates formed by fungi is huge. *(Avena sativa)* seeds. *J. Food Biochem.* 2019, **43**, e12713.

42. Dikbaş, N.; Uçar, S.; Tözü, E.; Kotan, M.S.; Kotan, R. **Antifungal activity of partially purified Information about such proteases hydrolyzing amyloid proteins is presented in** [\[81\]\[82\]\[83\]\[84\]\[85\]\[86\]\[87\]\[88\]\[89\]\[90\]\[91\]\[92\]](#) bacterial chitinase against *Alternaria alternata*. *Erwerbs-Obstbau* 2022, [\[93\]\[94\]\[95\]\[96\]](#).

43. Zhang, W.; Ma, J.; Yan, Q.; Jiang, Z.; Yang, S. **Biochemical characterization of a novel acidic chitinase with antifungal activity from *Penicillium vulgare***. *J. Appl. Polym. Sci.* 2021, **182**, 1528–1536. Discussing the prospects of the possible use of enzymes hydrolyzing fungal amyloid proteins, it should be noted that so far there are a few such studies. The ability of several proteolytic enzymes, such as subtilisin, keratinases, and proteinase K, to degrade yeast prion aggregates of protein Sup35NM under various conditions was

44. Rajnhec, M.; Jopčík, M.; Danchenko, M.; Libantová, J. **Biochemical and antifungal characteristics of recombinant class I chitinase from *Drosera rotundifolia***. *Int. J. Biol. Macromol.* 2020, **161**, 854–863. investigated [\[91\]\[92\]\[93\]\[94\]](#). It has been shown that hexameric AAA⁺-ATPase (Hsp104), which is a yeast chaperone, is involved in the fragmentation of large fungal amyloid fibrils. It is believed that the direct binding of Hsp104 to

45. Wang, J.; Ni, P.; Gao, K.; Ye, H.; Liu, Y.; Tang, Z.; Zhang, S.; Jin, J.; Han, J.; Hsiao, M. 2014. Isolation, characterization and antifungal activity of *Bacillus amyloliquefaciens* against *Aspergillus niger* and the synergistic action on the degradation of bacterial chitinases. *Biotechnol Lett* 2014, 36, 1421–1426. [\[80\]](#)

46. Li, Q.; Hou, Z.; Zhou, D.; Jia, M.; Lu, S.; Yu, J. Antifungal activity and possible mechanism of *Bacillus amyloliquefaciens* FX2 against the postharvest apple ring rot pathogen. *Phytopathology* 2022, 112, 2486–2494.

including subtilisin-like serine proteases TK-SP from hyperthermophilic archaeon *T. kodakarensis* [\[81\]](#), nattokinase

47. Liu, B.; Cai, Y.; Wang, N.; He, J.; Liu, Y.; Liu, J.; Gao, X.; Li, J.; Tang, Y.; Han, B. X. Expression and characterization of a chitinase and a chitinase-like protease with antifungal activity from a rare *Bacillus* sp. [\[82\]](#) and [\[83\]](#) *Saccharomyces cerevisiae* [\[84\]](#) and *Aspergillus* [\[85\]](#) and *Penicillium* [\[86\]](#).

48. Brzezinska, M.S.; Jankiewicz, U.; Kalwasinska, A.; Swiatczak, J.; Zero, K. Characterization of chitinase from *Streptomyces luridiscabiei* U05 and its antagonist potential against fungal plant pathogens. *J. Phytopathol.* 2019, 167, 404–412.

49. Li, D.; Yang, S. Characterization of a chitinase from *Sphaerotilus* sp. BAO-1801 has an antifungal activity and a biocatalytic activity producing chitobiose A_β. *Basidiomycetol* 2018, 58, 848–856.

50. Li, Z.; Xia, C.; Wang, Y.; Li, X.; Qiao, Y.; Li, C.; Zhou, J.; Zhang, L.; Ye, X.; Huang, Y.; et al. Identification of an endo-chitinase from *Corallococcus* sp. EGB and evaluation of its antifungal properties. *Int. J. Biol. Macromol.* 2019, 132, 1235–1243.

51. Moon, C.; Seo, D.J.; Song, Y.S.; Hong, S.H.; Choi, S.H.; Jung, W.J. Antifungal activity and

52. Despite the fact that chitinases have a degradation function, the chitinase produced from serine proteases, new promising enzymes. *Microb Pathog* 2017, 110, 218–224.

53. Deng, J.-J.; Shi, D.; Mao, H.-H.; Li, Z.-W.; Liang, S.; Ke, Y.; Luo, X.-C. Heterologous expression and characterization of an antifungal chitinase (Chit46) from *Trichoderma harzianum* GIM 3.442

54. and its application in colloidal chitin conversion. *Int. J. Biol. Macromol.* 2019, 134, 113–121.

3.3. Enzymes Hydrolyzing Mycotoxins, Antibiotics, and QS Molecules (QSMs) of Fungi

55. Sazan, G.; Cadirci, B. Comparison of in vitro antifungal activity methods using *Aeromonas* sp.

56. BHC02 chitinase, whose physicochemical properties were determined as antifungal agent. To date, a significant amount of information has been accumulated about QS in the cells of various fungi and

57. molecules that are produced by the fungi themselves in response to an increase in their concentration per unit volume. These QSMs are produced in order to trigger the processes of fungal cell transition to a state of stable

58. Bubnova, T.V.; Nemashkalov, V.A.; Sereda, A.S.; Tcsherbakova, L.A.; et al. Creation of chitinase intercellular communication, synchronization of the functions of multicellular populations, and biochemical changes in the cells themselves [\[100\]](#) [\[101\]](#) [\[102\]](#) [\[103\]](#) [\[104\]](#). The ability of individual enzymes to catalyze the hydrolysis of fungal

59. Biochemistry 2020, 85, 717–724.

60. QSMs allows them to be attributed to the so-called Quorum Quenching enzymes (QQE). Gluconolactonase- [\[105\]](#)

61. Shekhmira, N.; Leichenko, E.; Blushenkov, A.; Basilev, H.; Gajiova, A.; Bazarkina, O. Effects of

62. identified serine and tyrosine esterases on the formation of *Candida albicans* biofilm. *Vet. World* 2020, 13, 1030–

63. 1036.

64. Discussing the potential of these enzymes as candidates for inclusion in combined antifungals with metal-containing compounds, it can be noted that for $\text{Hs}_6\text{-OPH}$, such possibilities have already been demonstrated and of a serine protease and the enzyme production of characteristics of *Bacillus licheniformis* TG116.

proteins [Arch Microbiol](#) 2022, **204**, 110111 appeared to be the most effective option for such a combination. However, so far, such combined antimicrobials have been investigated only against bacterial cells. [\[112\]](#) and their effectiveness against fungal cells has yet to be confirmed.

recombinant aspartic protease from *Trichoderma harzianum* against pathogenic fungi. *Enzyme*

Microb. Technol. 2018, **112**, 35–42.

Interesting use cases for combining with metal-containing compounds are enzymes that carry out the destruction of

58 *Phytophthora* N. with *Kodamaea* An, *Kinoshita* G., *State* R., *Rai* S., *Sathish* S., *Shivam* H., *Medha* S., *Charu* S., *Kishore* H., *RCSM*

Statistical optimization of a combination of cellulase and beta-1,4-endoglucanase by chitinolytic

deoxyribonuclease (DgNase) having antifungal activity. *Appl. Biochem. Biotechnol.* 2020, **191**, 135–150.

OPH [\[39\]](#)[\[113\]](#). In this regard, with their involvement in combined antifungal formulations, a very interesting option 59. *Oyeleye*, A.; *Normi*, Y.M. Chitinase: Diversity, limitations, and trends in engineering for suitable may turn out to provide a multi-targeted action due to the promiscuous activities of these enzymes. *Biosci. Rep.* 2018, **38**, BSR2018032300.

60 *Zhang*, W.; *Yan*, Y.; *Mai*, L.; *Yan*, Q.; *Jiang*, Z.; *Yang*, S. Biochemical characterization of a combined variant functional chitinase/lysozyme from *Streptomyces sambonii* suitable for a chitinolytic

hydrolytic antifungal. *Biotechnol. Lett.* 2020, **42**, 1489–1499.

secondary metabolites in their QS state. Here, the undisputed leaders are β -lactamases, known to everyone due to studies of bacterial antibiotic resistance to natural 61. *Li*, S.; *Zhang*, B.; *Zhu*, H.; *Zhu*, T. Cloning and expression of the chitinase encoded by and semi-synthetic penicillins and cephalosporins [\[114\]](#) *ChiKJ406136* from *Streptomyces sambonii* (Millard & Burr) Waksman KJ40 and its antifungal

effect. *Forests* 2018, **9**, 699.

It is interesting to note that QSE including His₆-OPH are close “relatives” for metallo- β -lactamases [\[115\]](#). Moreover,

62 *de Salazar*, V.A.; *Arranz-Trullen*, J.; *Prats-Ejarque*, G.; *Torrent*, M.; *Andreu*, D.; *Pulido*, D.; *Boix*, E.

*Exploring the mechanism of action of human secretory RNase 3 and RNase 7 against *Candida* for*

industrial antifungal. *Microbiol. Open* 2016, **5**, 830–845.

been mentioned here more than once in connection with their various targets of action in fungal cells, their use in research on the development of new antifungals may be not

63. *Salazar*, V.A.; *Arranz-Trullen*, J.; *Prats-Ejarque*, G.; *Torrent*, M.; *Andreu*, D.; *Pulido*, D.; *Boix*, E. only new but also promising. Surprisingly, an active search for data on the use of metallo- β -lactamases in the

Insight into the antifungal mechanism of action of human RNase N-terminus derived peptides. Int.

content of any antifungals to give them a number of catalytic activities, as discussed above, did not reveal any.

J. Mol. Sci. 2019, **20**, 4558.

64. *Shand*, Y.; *Ye*, M.; *He*, C.; *Wang*, Y.; *Moser*, D.; *Lehning*, R.; *Schneiter*, R.; *Sticker*, B. *Gold nanoparticle* (ZnII),

Mn(II) chitosan delivery system and its synergistic interaction with chitosan nanoparticles against when creating

confined bacterial antimicrobial biofilms targeting the biofilm matrix and microorganisms. *Water, the*

Sci. Eng. C 2020, **108**, 110499.

metal-containing compounds that are not embedded in the active site of enzymes but can exhibit significant antimicrobial activity at low MIC values [\[110\]](#)[\[111\]](#) looks interesting and promising.

65. *Vidhate*, R.P.; *Bhide*, A.J.; *Gaikwad*, S.M.; *Girl*, A.P. A potent chitin-hydrolyzing enzyme from

Myrothecium verrucaria affects growth and development of *Helicoverpa armigera* and plant fungal pathogen. *Int. Microbiol.* 2011, **14**, 5–10.

4. Combination of Antifungal Enzymes and Metal-Nanoparticles

66. *Silva*, F.A.; *Albuquerque*, L.M.; *Martins*, T.F.; *de Freitas*, J.A.; *Vasconcelos*, I.M.; *de Freitas*, D.Q.;

It is known currently that many sources and types of enzymes can be used to prepare antifungal formulations with metal NPs. bacterial keratinase [\[16\]](#) and chitinase [\[17\]](#), archaeal protease and lipase [\[18\]](#), fungal β -1,3-glucanase, *N*-acetylglucosaminidase, chitinase, and acid protease [\[19\]](#)[\[20\]](#), etc. Such formulations can possess secondary antioxidant [\[16\]](#)[\[17\]](#) and/or specific inhibitory activity [\[16\]](#). The additional antibacterial action mode of these combinations is widely present [\[16\]](#)[\[18\]](#)[\[20\]](#)[\[21\]](#).

67. *Zhang*, L.; *Tao*, Y.; *Zhao*, S. A novel peroxidoxin from the antagonistic endophytic bacterium *Enterobacter* sp. *V1* contributes to cotton resistance against *Verticillium dahliae*. *Plant Soil* 2020, **454**, 395–409.

68. *β-1,3-Glucanase* (a large proteinase) is a key enzyme for Diazotization of Pithéa Azyre, from Blatt S.P., Cappa, P., [\[116\]](#) [\[118\]](#) [\[119\]](#) [\[120\]](#). *β-1,3-Glucanase* (Kwan, T.A. H. et al.) probing structural changes during self-assembly of surface-active conhydrophobin (proteins that do not form [\[149\]](#) amyloid) in *Aspergillus fumigatus* *Mol. Biol.* **2018**, *430*, 3784–3804. It can inhibit growth but also prevent the formation of sclerotia thereby leading to lifecycle arrest.

69. Valsecchi, I.; Dupres, V.; Stephen-Victor, E.; Guijarro, J.I.; Gibbons, J.; Beau, R.; Bayry, J.;

Coppee, J.-Y.; Lafont, F.; Latgé, J.P.; et al. Role of hydrophobins in *Aspergillus fumigatus*. *J. Fungi* **2017**, *4*, 2. Interestingly, the “un-capping” of Ag NPs (i.e., desorption of enzymes) leads to a detectable increase of their size and is likely to be a result of their aggregation [\[120\]](#). At the same time, the negative net charge of “uncapped” Ag NPs [\[120\]](#) also contributes to the hydrophobicity of the surface, which may affect the assembly and disassembly of *Aspergillus*. Interestingly, “uncapped” Ag NPs could affect *Candida* *self* **2019**, *15*, 10023 only decrease the number of sclerotia by twofold as compared to the control experiment without any effector.

70. Pham, C.L.L.; Rey, A.; Lo, V.; Soules, M.; Ren, Q.; Meisl, G.; Knowles, T.P.J.; Kwan, A.H.; Sunde, M. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. *Sci. Rep.* **2016**, *6*, 25288.

71. Sunde, M.; Conrad, J.; Gómez, Y.; Costa, P.; Peters, M. Dehydro-β-Racine: Reversible protein shift by 1.5–2

72. time aggregation is a protective mechanism to ensure cell wall integrity after stress. *Nat. Chem. Biol.* **2017**, *13*, 119–120. The second prevalent subclass (after polysaccharides). The last ones have been shown to propagate resistance of sclerotia towards environmental factors and, for example, to slaughter via the hydrolytic

73. Beaussart, A.; Alsteens, D.; El-Kirat-Chatel, S.; Lipke, P.N.; Kucharikova, S.; Dijck, P.V.; Dufrene, Y.F. Single-molecule imaging and functional analysis of Als adhesins and mannans during melanized cells on the sclerotia surface [\[124\]](#), further limiting enzymatic hydrolysis and antifungal penetration. Thus, *Candida albicans* morphogenesis. *ACS Nano* **2012**, *6*, 10950–10964.

74. Ho, Y.; Herman-Baumer, P.; Shaw, C.; Conrad, K.A.; Garcia-Sherman, M.C.; Drach, J.; Dufrene, Y.F.; Lipke, P.N.; Raucoo, J.M. Amyloid core sequence in the major *Candida albicans* adhesin

75. Als1p mediates cell-cell adhesion. *mBio* **2019**, *10*, 10–128.

During field trials of chitinase-based formulation against filamentous fungi [\[117\]](#) it was found to be slightly less effective than the same formulation with a live biocontrol agent (*Streptomyces cellulosa*). This may be a consequence of differing profiles of protective gene modulation in the plant by these formulations.

76. Monnerie, C.; Bousquet, A.; Costa, S.; Gómez, Y.; Soules, M.; Beaussart, A.; Dufrene, Y.F.; Belotti, M. Melittin and the major *Candida* amylase (60% Dialysed Enzyme, Curin, Richard [\[125\]](#)). The protein dynamics in a *Candida* biofilm and the role of adhesins in the transition to hyphal form and biofilm formation. The potential of endo- and exo-adhesins for antifungal biofilm formation. *PLoS ONE* **2013**, *8*, e72395.

77. Cabral, V.; Znaidi, S.; Walker, L.A.; Martin-Yken, H.; Dague, E.; Legrand, M.; Lee, K.; Chauvel,

M.; Firon, A.; Rossignol, T.; et al. Targeted changes of the cell wall proteome influence *Candida* biofilm formation. Melittin is known to disturb membranes of different (micro)organisms, activate several transmembrane receptors, *Candida* ability to form single- and multi-strain biofilms. *PLoS Pathog.* **2014**, *10*, e1004542.

78. Moreira, R.; Faria, E.; Gómez, Y.; Groot, P.; Mols, A.; Cottier, F.; de Groot, C.; Drach, J.; Gómez, Y.; Koster, G. Melittin drives the antifungal activity of *Candida* biofilms. *Antimicrob Agents Chemother* **2015**, *59*, 6206–6207.

79. Koster, G.; Gómez, Y.; Groot, P.; Mols, A.; Cottier, F.; de Groot, C.; Drach, J.; Gómez, Y.; Koster, G. Melittin and melittin-like peptides are required for cell wall integrity. *Microbiology* **2009**, *155*, 2041–2040 to the fungal cell surface itself and affect biofilm formation and yeast-to-hyphal transition in combination with conventional drugs [\[127\]](#). Thus,

79. Shammuganathan, R.; Baker, M.; O'Wit, B.; Ball, S.P.; Steiner, M.; Taft, P.; Johnson, C.; Yau, S.; Snijders, M. Microbial function while amyloidogenic: serving diverse purposes of structure, adhesion and defence. *Biophys. Rev.* 2019, 11, 287–302.

Some toxicity was shown for Ag NPs toward the lung fibroblasts of Chinese hamsters, the embryo fibroblasts of 80. Chernova, T.A.; Chernoff, Y.O.; Wilkinson, K.D. Yeast models for amyloids and prions: albinos Swiss mice, human aneuploid immortal keratinocytes, and the roots of onions [119,120]. Moreover, such

Environmental modulation and drug discovery. *Molecules* 2019, 24, 3388.

81 days later, [120] Ais Hwang, K.; Yoo, J.; Choi, S.; Sakode, A.; Akdag, K.; Kaya, S.; Takabayashi, E. Enzymatic maturation activity of a subtilisin released by *Thi-SP* from the thermophilic *Bacillus kodamai* is a degradative and fibril-forming enzyme and capable of degrading the abnormal prion protein. *Environ. Biotechnol.* 2013, 18, 10–19.

82. Dabbagh, F.; Negahdaripour, M.; Berenjian, A.; Behfar, A.; Mohammadi, F.; Zamani, M.; Irajie, C.; Ghasemi, Y. Nattokinase: Production and application. *Appl. Microbiol. Biotechnol.* 2014, 98, 9199–9206.

83. Pilon, J.L.; Nash, P.B.; Arver, T.; Hoglund, D.; VerCauteren, K.C. Feasibility of infectious prion digestion using mild conditions and commercial subtilisin. *J. Virol. Methods* 2009, 161, 168–172.

84. Saunders, S.E.; Bartz, J.C.; Vercauteren, K.C.; Bartelt-Hunt, S.L. Enzymatic digestion of chronic wasting disease prions bound to soil. *Environ. Sci. Technol.* 2010, 44, 4129–4135.

85. McLeod, A.H.; Murdoch, H.; Dickinson, J.; Dennis, M.J.; Hall, G.A.; Buswell, C.M.; Carr, J.; Taylor, D.M.; Sutton, J.M.; Raven, N.D.H. Proteolytic inactivation of the bovine spongiform encephalopathy agent. *Biochem. Biophys. Res. Commun.* 2004, 317, 1165–1170.

86. Dickinson, J.; Murdoch, H.; Dennis, M.J.; Hall, G.A.; Bott, R.; Crabb, W.D.; Penet, C.; Sutton, J.M.; Raven, N.D.H. Decontamination of prion protein (BSE301V) using a genetically engineered protease. *J. Hosp. Infect.* 2009, 72, 65–70.

87. Yoshioka, M.; Miwa, T.; Horii, H.; Takata, M.; Yokoyama, T.; Nishizawa, K.; Watanabe, M.; Shinagawa, M.; Murayama, Y. Characterization of a proteolytic enzyme derived from a *Bacillus* strain that effectively degrades prion protein. *J. Appl. Microbiol.* 2007, 102, 509–515.

88. Hui, Z.; Doi, H.; Kanouchi, H.; Matsuura, Y.; Mohri, S.; Nonomura, Y.; Oka, T. Alkaline serine protease produced by *Streptomyces* sp. degrades PrPSc. *Biochem. Biophys. Res. Commun.* 2004, 321, 45–50.

89. Bahun, M.; Šnajder, M.; Turk, D.; Poklar Ulrich, N. Insights into the maturation of pernixine, a subtilisin-like protease from the hyperthermophilic archaeon *Aeropyrum pernix*. *Appl. Environ. Microbiol.* 2020, 86, e00971-20.

90. Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E. Degradation of the disease-associated prion protein by a serine protease from lichens. *PLoS ONE* 2011, 11, e19836.

91. Chen, C.Y.; Rojanatavorn, K.; Clark, A.C.; Shih, J.C. Characterization and enzymatic degradation of Sup35NM, a yeast prion-like protein. *Prot. Sci.* 2005, 14, 2228–2235.

92. Wang, J.J.; Borwornpinyo, R.; Odetallah, N.; Shih, J.C. Enzymatic degradation of a prion-like protein, Sup35NM-His6. *Enzyme Microb. Technol.* 2005, 36, 758–765.

93. Sharma, R.; Gupta, R. Coupled action of γ -glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. *Biores. Tech.* 2012, 120, 314–317.

94. Rajput, R.; Gupta, R. Thermostable keratinase from *Bacillus pumilus* KS12: Production, chitin crosslinking and degradation of Sup35NM aggregates. *Biores. Tech.* 2013, 133, 118–126.

95. Ningthoujam, D.S.; Mukherjee, S.; Devi, L.J.; Singh, E.S.; Tamreihao, K.; Khunjamayum, R.; Banerjee, S.; Mukhopadhyay, D. In vitro degradation of β -amyloid fibrils by microbial keratinase. *Alzheimers Dement.* 2019, 5, 154–163.

96. Kim, N.; Lee, H.J. Redox-active metal ions and amyloid-degrading enzymes in Alzheimer's disease. *Int. J. Mol. Sci.* 2021, 22, 7697.

97. Manikandan, P.; Moopantakath, J.; Imchen, M.; Kumavath, R.; SenthilKumar, P.K. Identification of multi-potent protein subtilisin A from halophilic bacterium *Bacillus firmus* VE2. *Microb. Pathog.* 2021, 157, 105007.

98. Kokwe, L.; Nnolim, N.E.; Ezeogu, L.I.; Sithole, B.; Nwodo, U.U. Thermoactive metallo-keratinase from *Bacillus* sp. NFH5: Characterization, structural elucidation, and potential application as detergent additive. *Heliyon* 2023, 9, e13635.

99. Efremenko, E.; Aslanli, A.; Lyagin, I. Advanced situation with recombinant toxins: Diversity, production and application purposes. *Int. J. Mol. Sci.* 2023, 24, 4630.

100. Efremenko, E.; Senko, O.; Stepanov, N.; Aslanli, A.; Maslova, O.; Lyagin, I. Quorum sensing as a trigger that improves characteristics of microbial biocatalysts. *Microorganisms* 2023, 11, 1395.

101. Willaert, R.G. Adhesins of yeasts: Protein structure and interactions. *J. Fungi* 2018, 4, 119.

102. Tian, X.; Ding, H.; Ke, W.; Wang, L. Quorum sensing in fungal species. *Annu. Rev. Microbiol.* 2021, 75, 449–469.

103. Mehmood, A.; Liu, G.; Wang, X.; Meng, G.; Wang, C.; Liu, Y. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: A review. *Molecules* 2019, 24, 1950.

104. Lee, K.; Lee, S.; Lee, S.H.; Kim, S.R.; Oh, H.S.; Park, P.K.; Choo, K.H.; Kim, Y.W.; Lee, J.K.; Lee, C.H. Fungal quorum quenching: A paradigm shift for energy savings in membrane bioreactor (MBR) for wastewater treatment. *Environ. Sci. Technol.* 2016, 50, 10914–10922.

105. Ogawa, K.; Nakajima-Kambe, T.; Nakahara, T.; Kokufuta, E. Coimmobilization of gluconolactonase with glucose oxidase for improvement in kinetic property of enzymatically induced volume collapse in ionic gels. *Biomacromolecules* 2002, 3, 625–631.

106. Aslanli, A.; Domnin, M.; Stepanov, N.; Efremenko, E. “Universal” antimicrobial combination of bacitracin and His6-OPH with lactonase activity, acting against various bacterial and yeast cells. *Int. J. Mol. Sci.* 2022, 23, 9400.

107. Aslanli, A.; Domnin, M.; Stepanov, N.; Efremenko, E. Synergistic antimicrobial action of lactoferrin-derived peptides and quorum quenching enzymes. *Int. J. Mol. Sci.* 2023, 24, 3566.

108. Hogan, D. Talking to themselves: Autoregulation and quorum sensing in fungi. *Eukaryot. Cell* 2006, 5, 613–619.

109. Bu’Lock, J.D.; Jones, B.E.; Winskill, N. The apocarotenoid system of sex hormones and prohormones in mucorales. *Pure Appl. Chem.* 1976, 47, 191–202.

110. Frolov, G.; Lyagin, I.; Senko, O.; Stepanov, N.; Pogorelsky, I.; Efremenko, E. Metal nanoparticles for improving bactericide functionality of usual fibers. *Nanomaterials* 2020, 10, 1724.

111. Lyagin, I.; Stepanov, N.; Frolov, G.; Efremenko, E. Combined modification of fiber materials by enzymes and metal nanoparticles for chemical and biological protection. *Int. J. Mol. Sci.* 2022, 23, 1359.

112. Lyagin, I.; Maslova, O.; Stepanov, N.; Presnov, D.; Efremenko, E. Assessment of composite with fibers as a support for antibacterial nanomaterials: A case study of bacterial cellulose, polylactide and usual textile. *Fibers* 2022, 10, 70.

113. Lyagin, I.; Maslova, O.; Stepanov, N.; Efremenko, E. Degradation of mycotoxins in mixtures by combined proteinous nanobiocatalysts: In silico, in vitro and in vivo. *Int. J. Biol. Macromol.* 2022, 218, 866–877.

114. Garces, F.; Fernández, F.J.; Montellà, C.; Penya-Soler, E.; Prohens, R.; Aguilar, J.; Baldomà, L.; Coll, M.; Badia, J.; Vega, M.C. Molecular architecture of the Mn²⁺-dependent lactonase UlaG reveals an RNase-like metallo-β-lactamase fold and a novel quaternary structure. *J. Mol. Biol.* 2010, 39, 715–729.

115. González, J.M. Visualizing the superfamily of metallo-β-lactamases through sequence similarity network neighborhood connectivity analysis. *Helion* 2021, 7, e05867.

116. Jang, E.-Y.; Son, Y.-J.; Park, S.-Y.; Yoo, J.-Y.; Cho, Y.-N.; Jeong, S.-Y.; Liu, S.; Son, H.-J. Improved biosynthesis of silver nanoparticles using keratinase from *Stenotrophomonas maltophilia* R13: Reaction optimization, structural characterization, and biomedical activity. *Bioprocess Biosyst. Eng.* 2018, 41, 381–393.

117. Abo-Zaid, G.; Abdelkhalek, A.; Matar, S.; Darwish, M.; Abdel-Gayed, M. Application of bio-friendly formulations of chitinase-producing *Streptomyces cellulosae* Actino 48 for controlling peanut soil-borne diseases caused by *Sclerotium rolfsii*. *J. Fungi* 2021, 7, e167.

118. Gaonkar, S.K.; Furtado, I.J. Biorefinery-fermentation of agro-wastes by *Haloferax lucentensis* GUBF-2 MG076878 to haloextremozymes for use as biofertilizer and biosynthesizer of AgNPs. *Waste Biomass Valorization* 2022, 13, 1117–1133.

119. Guilger-Casagrande, M.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Fraceto, L.F.; de Lima, R. Biosynthesis of silver nanoparticles employing *Trichoderma harzianum* with enzymatic stimulation for the control of *Sclerotinia sclerotiorum*. *Sci. Rep.* 2019, 9, e14351.

120. Guilger-Casagrande, M.; Germano-Costa, T.; Bilesky-José, N.; Pasquoto-Stigliani, T.; Carvalho, L.; Fraceto, L.F.; de Lima, R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards *Sclerotinia sclerotiorum*. *J. Nanobiotechnol.* 2021, 19, e53.

121. Dror, Y.; Ophir, C.; Freeman, A. Silver-enzyme hybrids as wide-spectrum antimicrobial agents. In *Innovations and Merging Technologies in Wound Care*; Gefen, A., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 293–307.

122. Xia, S.; Xu, Y.; Hoy, R.; Zhang, J.; Qin, L.; Li, X. The notorious soilborne pathogenic fungus *Sclerotinia sclerotiorum*: An update on genes studied with mutant analysis. *Pathogens* 2020, 9, e27.

123. Chet, I.; Henis, Y. Effect of catechol and disodium EDTA on melanin content of hyphal and sclerotial walls of *Sclerotium rolfsii* sacc. and the role of melanin in the susceptibility of these walls to β -(1 → 3) glucanase and chitinase. *Soil Biol. Biochem.* 1969, 1, 131–138.

124. Melo, B.S.; Voltan, A.R.; Arruda, W.; Lopes, F.A.C.; Georg, R.C.; Ulhoa, C.J. Morphological and molecular aspects of sclerotial development in the phytopathogenic fungus *Sclerotinia sclerotiorum*. *Microbiol. Res.* 2019, 229, e126326.

125. Yu, D.; Wang, Y.; Zhang, J.; Yu, Q.; Liu, S.; Li, M. Synthesis of the ternary nanocomposites composed of zinc 2-methylimidazolate frameworks, lactoferrin and melittin for antifungal therapy. *J. Mater. Sci.* 2022, 57, 16809–16819.

126. Babina, S.E.; Kanyshkova, T.G.; Buneva, V.N.; Nevinsky, G.A. Lactoferrin is the major deoxyribonuclease of human milk. *Biochemistry* 2004, 69, 1006–1015.

127. Fernandes, K.E.; Weeks, K.; Carter, D.A. Lactoferrin is broadly active against yeasts and highly synergistic with amphotericin B. *Antimicrob. Agents Chemother.* 2020, 64, e02284-19.

Retrieved from <https://encyclopedia.pub/entry/history/show/106604>