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Next-generation sequencing (NGS) has taken on major importance in clinical oncology practice. With the advent of

targeted therapies capable of effectively targeting specific genomic alterations in cancer patients, the development

of bioinformatics processes has become crucial. Thus, bioinformatics pipelines play an essential role not only in the

detection and in identification of molecular alterations obtained from NGS data but also in the analysis and

interpretation of variants, making it possible to transform raw sequencing data into meaningful and clinically useful

information.

bioinformatics  clinical oncology  pipeline  next-generation sequencing (NGS)

1. Introduction

Progress in next-generation sequencing (NGS), including an increase in its accessibility and cost effectiveness,

has enabled comprehensive genetic testing in many cancer centers and transformed cancer treatment. In

particular, NGS has permitted the advancement of precision oncology focused on identifying genetic changes in

tumors that include single-nucleotide variants (SNVs), copy number variations (CNVs), small insertions and

deletions (indels), structural variants (SVs), and microsatellite instability (MSI) . Such valuable insights into the

molecular characteristics of tumors provided by NGS have made it an essential tool for the diagnosis and treatment

of cancer .

Robust and reliable bioinformatics pipelines able to organize, interpret, and accurately identify these molecular

alterations from within sequencing datasets are crucial in the treatment decision-making process. The robustness

ensures that the pipeline can handle variations in the data and produce consistent results, while the reproducibility

ensures that the same results can be obtained when the pipeline is run multiple times. In addition, the

comprehensive traceability and understanding of how the pipeline works ensure that others are able to reproduce

the results. To this end, a well-designed and well-documented bioinformatics pipeline can provide reliable and

accurate guidance for oncologists.

2. Workflow Management

In clinical oncology, the rapid evolution of high-throughput sequencing technologies has increased data generation,

necessitating robust and efficient bioinformatic pipelines for analysis. Command-line tools  offer a flexible and

efficient means to handle these data. These tools enable bioinformaticians to construct intricate pipelines that
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encompass various stages of analysis. The command-line interface, with its text-based interaction, allows for

precise control over parameters, facilitating the customization and optimization of workflows to suit the specific

requirements of clinical oncology research. However, command-line tools rely solely on text-based interfaces,

requiring users to input commands in a terminal or console, while workflow management tools commonly provide

users with a graphical or text-based interface to design workflows, offering a more visually intuitive experience.

Workflow management tools  also ensure the automation and standardization of the bioinformatics process and

allow the user to define the order, parameters, and input data for a sequence of tools. They directly take care of the

correct execution and documentation of the intermediate steps. Several workflow managers are available, including

Snakemake and Nextflow, among others . Such systems help bioinformaticians save time, reduce

errors, and ensure the accuracy and reliability of their analyses. In cancer genomics, a bioinformatics pipeline is

executed by the workflow manager such as that described in Figure 1 and comprises different steps: (i) quality

control, (ii) adapter trimming, (iii) alignment, (iv) variant calling, (v) variant annotation, (vi) variant filtering, (vii) CNV

calling, (viii) MSI status calling, and (ix) interface generation.

[6]
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Figure 1. Major steps of an NGS bioinformatics pipeline. This diagram illustrates the processes forming the

pipeline and the files generated during its execution. The gray segments denote processes that exist independently

of the pipeline. Light yellow signifies external prerequisites, while yellow represents the initial pipeline stages
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involving FastQ processing. The alignment stage is highlighted in green, while light green indicates the analyses

conducted, encompassing SNV, CNV, and MSI status calling. The final step, interface generation, is illustrated in

blue. Acronyms: FASTQ—a text-based file storing nucleotide sequences and corresponding quality scores; BAM—

Binary Alignment Map; VCF—Variant Call Format; CNV—Copy Number Variation; SNV—Single-Nucleotide Variant;

MSI—Micro Satellite Instability.

An up-to-date compilation of available tools for each step of the pipeline is provided in Table 1. It is important to

mention that the Broad Institute provides a Genome Analysis Toolkit (GATK) , which contains a wide variety of

tools designed for variant discovery and genotyping that covers the steps described in Figure 1. Moreover, the nf-

core community project  has assembled a curated collection of analysis pipelines constructed with Nextflow

including a somatic variant calling workflow, SAREK , available at “https://nf-co.re/sarek/3.4.0 (accessed on 1

December 2023)”. Nf-core offers portable and reproducible analysis pipelines and the support of an active

community.

Galaxy  and Taverna  are both noteworthy platforms in the field of bioinformatics analysis. Galaxy, as an

open-source platform, offers a web-based interface for analyzing high-throughput genomics data, especially NGS

data. It accommodates users with varying levels of bioinformatics expertise, allowing them to create, execute, and

share workflows for diverse bioinformatics analyses. Featuring a user-friendly graphical interface, Galaxy is

accessible to a broad audience, providing tools and workflows for tasks such as sequence alignment, variant

calling, and various genomic analyses. The platform emphasizes reproducibility, enabling users to systematically

save and share their analyses. Taverna serves as a distinct workflow management system designed for various

scientific applications, including bioinformatics. It facilitates the design and execution of workflows, providing a

flexible environment for scientific analysis and automation. Additionally, Tavaxy  shortens the workflow

development cycle by incorporating workflow patterns to streamline the creation process. It facilitates the reuse

and integration of existing (sub-) workflows from Taverna and Galaxy, while also supporting the creation of hybrid

workflows.

Noteworthy, private solutions also exist. For example, the DRAGEN secondary analysis pipeline ensures all the

steps from sequencing files to annotated and filtered genetic alterations. It was recently benchmarked, and the

authors claim its value in a preprint that came out this year .

Table 1. List of commonly used bioinformatic tools.
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Process Tools References

Workflow
managers

Nextflow, Snakemake

Quality control fastp, FastQC *, Picard, MultiQC

Adapter
trimming

fastp, trimmomatic, cutadapt *, BBDuk
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* Used in in-house bioinformatics pipeline.

3. FastQ Processing

3.1. Quality Control

NGS sequencing produces binary base call sequence files (BCL) that are demultiplexed into FASTQ format

sequencing files for each sample. The FASTQ format is a text-based format designed to store nucleotide

sequences, along with their corresponding quality scores (Figure 2A). The initial stage of all bioinformatics

pipelines is to assess the quality of the data. Indeed, sequence quality control is an essential step in the analysis of

NGS data, which are generated in large volumes and can be prone to various types of errors, such as sequencing

errors, adapter contamination, and sample cross-contamination. Sequence quality control aims to ensure that the

sequencing data are accurate, reliable, and free from technical artifacts that could affect downstream analysis. It

aims to identify low-quality bases, sequence bias, and over-representation of certain sequences. Quality

assessment can be performed using tools such as fastp  or FastQC , a flexible and widely used tool for

quality control, developed at the Babraham Institute to assess the quality of sequencing data in fastq files. This tool

is robust, can be used on all operating systems, and offers both a graphical user interface and a command line

interface. It is commonly incorporated by bioinformaticians as a quality control step in customized pipelines. The

latest versions of FastQC include Picard , a tool developed by the Broad Institute that can manage SAM, BAM,

and VCF files and perform quality control at different stages of the bioinformatics pipeline. An example of good and

bad sequence quality profiles (i.e., the mean quality value across each base position in the read) obtained using

FastQC is provided in Figure 3A. Moreover, MultiQC  consolidates data from various QC tools to create a

cohesive report, complete with interactive plots, spanning multiple samples.

Process Tools References

Reads
alignment

BWA *, Bowtie, HISAT2, STAR

Variant calling HaplotypeCaller, freebayes, mutect2, verdict *

Variant filtering dbSNP, 1000G, GnomAD *

Variant
annotation

VEP *, MobiDetails, ANNOVAR, SnpEff

CNV calling
CNV-LOF, CoverageMaster, CNV-RF, DeepCNV, CNV_IFTV, HBOS-

CNV, CNV-MEANN, ControlFREEC, ifCNV *, mcna

MSI status
calling

MIAmS *, MSIsensor, MSIdetect, deltaMSI
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Figure 2. Overview of the different file types mentioned in the pipeline. (A) FASTQ file. (B) SAM/BAM file. (C) VCF

file.
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Figure 3. FastQC mean quality scores. (A) Examples of “good” and “bad” sequence quality. (B) Overview of the

adapter trimming impact.

3.2. Adapter Trimming

Another preprocessing step is the adapter trimming, which involves removing adapter sequences, low-quality

reads, and contaminating sequences from the raw sequencing data. The most widely used tools for data

preprocessing are fastp , Trimmomatic , Cutadapt , and BBDuk . In Figure 3B, researchers present

quality profiles obtained using FastQC, illustrating the impact of adapter trimming with Cutadapt.

4. Alignment of the Nucleotide Sequence on a Reference
Genome

[20] [24] [25] [26]
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After adapter trimming, the next step is to align the reads to a reference genome. The Genome Reference

Consortium introduced the latest human reference genome, GRCh38 , in 2017, followed by subsequent

improvements, the latest being GRCh38.p14 in March 2022, which remarkably reduced the number of gaps in the

assembly to 349 compared to the initial version’s approximately 150,000 gaps. Notably, these gaps were

predominantly found in regions like telomeres, centromeres, and long repetitive sequences. Last year, the

Telomere-to-Telomere (T2T) Consortium presented the first fully assembled reference genome , T2T-CHM13,

eliminating all gaps.

The alignment step is performed by read mapper software, which assigns a location on the reference genome to

each read based on its sequence. Since the reads do not contain information about their location in the genome,

the mapper infers this information by comparing the read sequence to the reference genome. Essentially, it checks

which parts of the reference genome match the sequences in the reads, determining where these reads originated

in the genome. However, this seemingly straightforward task is computationally intensive and time-consuming

because the software must meticulously compare each read to the entire reference genome and assign a precise

position for it. The computational demand arises from the need for high accuracy and reliability in determining the

origin of each read, a fundamental step in understanding the genetic information contained within the sequenced

sample. There are many different read mappers available, each with its own strengths and weaknesses. Common

examples include BWA  for genome and Bowtie2  for transcriptome. These tools employ a Burrows–Wheeler

transform, a computational method invented by Michael Burrows and David Wheeler in 1994. This method involves

rearranging character strings into sequences of similar characters, which offers significant computational benefits.

Indeed, strings with repeated characters are easily compressible using techniques like move-to-front transform and

run-length encoding. Various aligners employ distinct strategies; for instance, HISAT2  is a graph-based genome

alignment tool. The utilization of a graph-based approach allows leveraging theoretical advancements in computer

science, resulting in a rapid and memory-efficient search algorithm. In transcriptome alignment, STAR  is also

widely employed, using the Maximal Exact (Unique) Match concept for seed searching, it proves particularly

advantageous for aligning long reads (>200 bp), such as those generated by third-generation sequencing.

The results of the read mapping step are usually provided in SAM format files, which can be converted to BAM

format for more efficient storage and processing. SAM/BAM files can be accessed through the Integrative

Genomics Viewer (IGV), allowing visualization of the reads (Figure 2B). The BAM files undergo different

modifications during the alignment post-processing step, which includes tasks such as sorting, marking duplicate

reads, and recalibrating base quality scores. The goal of these post-processing steps is to improve the accuracy

and reliability of the final variant calls.

After the read mapping step, the resulting SAM/BAM files are sorted according to their genomic coordinates. This

sorting is important because downstream analysis often relies on the order of the aligned reads. PCR duplicates

are then commonly removed using tools such as Picard  or SAMtools . PCR duplicates are identical copies

of the same genomic fragment and can be introduced during sample preparation and PCR amplification steps.

They can bias the analysis and lead to overrepresentation of certain regions of the genome. However, it is

important to note that duplicated reads can also be biological copies originating from the same genomic location of
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chromosomes of different cells. For deep-coverage targeted sequencing approaches the probability of a duplicate

read to be a biological copy increases with coverage, and therefore, the removal of duplicates is typically not

performed in these cases.
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