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Aziridines are three-membered cyclic organic heterocyclic compounds with one nitrogen atom in the ring.

aziridine nonactivated aziridine aziridinium ion ring-opening synthesis

| 1. Introduction

Aziridines are three-membered cyclic organic heterocyclic compounds with one nitrogen atom in the ring. They are
valuable and versatile due to the reactive three-membered ring LIZIBIAIBIEITIEIE Highly ring-strained aziridines,
e.g., other three-membered ring compounds such as cyclopropane and oxirane, render various nitrogen-containing
compounds through ring-opening reactions with nucleophiles RUILUIA2IS] - However, their stability and reactivity
depend on substituents at the ring nitrogen (whether they are electron-withdrawing or -donating). Aziridines are
bifurcated into “activated” ones bearing electron-withdrawing substituents at the ring nitrogen and “nonactivated”

ones with electron-donating substituents 24! (Figure 1).
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Figure 1. Chemical structures of “activated” and “nonactivated” aziridines and electrostatic potential maps of their
representative examples N-methylaziridine and N-acetylaziridine. EDG = electron-donating group; EWG = electron-

withdrawing group.

Activated aziridines are quite reactive toward most nucleophiles, while nonactivated aziridines are inert unless they
are activated as aziridinium ions or their equivalents by proper electrophiles including alkyl, acyl, trimethylsilyl, and
Lewis acids [L8I18] When the simple aziridine without any substituent on the ring is protonated as an aziridinium
ion, the ring strain is increased by 47 kJ/mol 12, Most ring-opening reactions of nonactivated aziridines proceed
with breakage of the bond between C and N, such as A or B, with the assistance of electrophiles after the
formation of aziridinium ions. Experimental and theoretical studies have shown that nonactivated aziridine is

possibly not serving as a 1,3-dipole, as shown in C and D, while activated aziridines can be utilized for a cyclization
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reaction with cleavage of the C—C bond for dipolarophile LAU18IA  This difference is due to bond energy

differences between C-N and C—C of nonactivated aziridines (Scheme 1).
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Scheme 1. Comparison of two different ring openings via C—N and C—C bond cleavages of nonactivated aziridines.

Thus, most reactions with nonactivated aziridines are carried out with the formation of aziridinium ion as a
guaternary ammonium at first, which is created via the chemical bond between nucleophilic and basic ring nitrogen
and an applied electrophile 2218l The aziridinium ion as an ionic intermediate is a well-known chemical species
called “nitrogen mustard”, including the notorious chemical warfare agent VX [O-ethyl S-[2-(diisopropylamino) ethyl]
methylphosphonothioate 29, In most cases, this aziridinium ion intermediate has a classical ammonium ion
character, albeit strained [2Y. However, there are many ways to generate aziridinium ions with various
electrophiles. Extensive calculation showed that reactivity differences were ordered as shown in Figure 2. Acyl
aziridinium is the most active one, followed by alkoxycarbonyl, trimethylsilyl, alkyl, and protonyl aziridinium ions.

The lewis acid-coordinated complex is the least active one 141,
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Figure 2. Order of reactivities of aziridinium ions by different electrophiles.

There are several protocols to generate aziridinium ions from nonactivated aziridines, as shown in Figure 2. Direct
addition of external electrophiles is the most convenient and easiest way for the preparation of an aziridinium ion
as a quaternary ammonium salt. Electrophiles needed for correspondents shown in Figure 2 include acid halides,
haloformates, trimethylsilyl halide, halomethane, proton, and Lewis acid (Equation (1), in Scheme 2). Aziridinium
ions can also be generated upon expulsion of the leaving group at the B-position of amine of the acyclic starting

substrate (Equation (2i), in Scheme 2) 283 The same strategy to expulse the leaving group from the pendant of
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aziridine or 2-leaving group substituted methyl aza-cycle yielded a bicyclic aziridinium ion (Equation (2ii), in
Scheme 2) [22l23], The same bicyclic aziridinium ion can also be derived from removal of the leaving group at the p-
site of cyclic starting substrates through aza-ring contraction (Equation (2iii), in Scheme 2) [24l25] | astly,
aziridinium ylides schematized below (Equations (3i) and (3ii), in Scheme 2) can be created by addition of a ring-

nitrogen to alkyne (Equation (3i), in Scheme 2) or diazo compound (Equation (3ii), in Scheme 2).

Eq 1. By addition of electrophile
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Eq 2. By inframalecular expulsion of leaving group
. e
EDG,M, R

e i
LT

LG i
i LG |EDG.®@
N g —= Q_ s (2Zii}
=1 - f=1
n=1,2134 T_LG-
LG = leaving group
5 = substihwants
e0g
A
LG =y
S 5
), -Le ED%/E\‘} (2iii)
M Jn
EDG LG
Eq 3. By additon of ring-nitragen to alkyne or diazo compound
Y
EDG : -1
EDG. [=]

NooL ol — [ N l (@)

R ¥ R
EDG .

1 Mz = mzﬁ

N+ A loor — Sk (3ii)

R R

Scheme 2. General scheme for the formation of aziridinium ions as synthetic intermediates from several different

types of starting substrates.

Chemical properties including stability and reactivity are dependent on characteristics of aziridinium ions. The way
to make an aziridinium ion using an electrophile is the key to lead to the reaction of a nonactivated aziridine. The
formation of aziridinium ions is sometimes observed spectroscopically. However, experimental and theoretical
evidence has taught us that the following ring-opening reaction from an aziridinium ion is known to have a single
transition state without forming any intervening ground state 28, Different starting substrates and applied

electrophiles can diversify the reaction products depending on whether the reaction proceeds via pathway “a” or
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“b”. The regiochemical pathway of ring opening via “a” is kinetic while the ring opening via “b” is thermodynamic,
yielding reaction products 3 and 4 as regioisomers, respectively (Scheme 3).
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Scheme 3. Two different ring-opening reaction pathways of nonactivated aziridine: “a” (kinetic) and “b”

(thermodynamic) with the formation of an aziridinium ion with electrophile.

The two different regiochemical pathways are bifurcated into kinetic and thermodynamic pathways with
substituents attached to the aziridine ring [Z2[28] \When 2-substitued nonactivated aziridine is activated and then
treated with various nucleophiles in the same medium, some nucleophiles such as bromine and iodine can lead the
reaction into the thermodynamic pathway, while hydride and fluorine yield the kinetic product. In particular, when
the hydride nucleophile is applied, only a kinetic product is afforded without formation of the regioisomer. The
nucleophile “chlorine” behaves in between, showing that the kinetic product is formed first. It is then diminished
with elapsed time to give the thermodynamic product from the equilibrated aziridinium ion intermediate 22, This big
regiochemical difference can also be observed between acetate and water, although both are oxygen nucleophiles
that can attack aziridinium ions [22[28 The reactivity is also influenced by the solvent as in the case of most
nucleophilic substitution reactions. The medium effects are also quite big for ring-opening reactions of nonactivated
aziridines due to different activation energies 12116l

| 2. Synthetic Application of Aziridinium lons

Many studies have reported synthetic applications of aziridines to provide a versatile entry to various nitrogen-
containing molecules. In addition, recent advances in preparative enantiopure nonactivated aziridines warrant a
streamlined synthesis of biologically important molecules, including natural products such as aza-sugars, alkaloids,
and others [BABLIE2 However, a few problems need to be solved. Firstly, an efficient and general method is
needed to prepare starting aziridines bearing diverse substitutes at three different sites, including N1 nitogen and
two carbons, C2 and/or C3 [B3I4I85[36] For g more efficient and diverse use of nonactivated aziridines, a better

understanding of the regiochemical pathway is needed. It is known that the regiochemical pathway of nonactivated

https://encyclopedia.pub/entry/9025 4/21



Synthetic Applications of Aziridinium lons | Encyclopedia.pub

aziridine is more diverse than that of activated aziridine WIBIABEISIAEIN |n this short review, we describe
synthetic developments to build important nitrogen-containing cyclic and acyclic molecules according to a few

reports published recently.

2.1. Aziridinium lons by Addition of External Electrophiles

The most popular and general synthetic method to generate an aziridinium ion is by adding electrophiles to
nonactivated aziridines, as shown in Eq 1 of Scheme 2. Representative examples are described below. When
chiral (2R,1'R)-2-acyl-(1'-phenylethyl)aziridines (5) and chiral nonactivated aziridines were treated with various acid
chlorides such as acetyl chloride, methoxymethyl formate, and oxalyl chloride, the corresponding N-acylaziridinium
ion (6) intermediates were generated by acylation of the nucleophilic aziridine ring nitrogen. These N-
acylaziridinium ion intermediates then reacted with chloride released from the acid chloride, an electrophile, to give
rise to ring-opened [-amino-B-chlorocarbonyl compounds (7). When we carried out the reaction in CHClj,
chlorinated compounds were observed BZ. However, under most reaction media including CH3;CN, subsequent
displacement of chloride with an internal oxygen nucleophile from methylchloroformate, acetyl chloride, and methyl
chlorooxoacetate proceeded, yielding oxazolidin-2-ones (8), B-amino-a-acetyloxypropionates (9), and morpholin-
2,3-diones (10), respectively (Scheme 4) [38],
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Scheme 4. Reactions of 2-acylaziridines with acid chlorides, specifically including methyl chloroformate, acetyl

chloride, and methyl chlorosuccinate.

Another useful external electrophile applicable to nonactivated aziridines is trimethylsilyl iodide with the formation
of an aziridinium ion attached to the ring nitrogen as shown in Scheme 5. When enantiopure (1'-
phenylethyl)aziridines (11) were treated with TMSI, the aziridinium ion (12) was formed. Subsequent ring opening
by the released iodide gave rise to an iodinated product (13), whose iodine was replaced by amine to afford

enantiopure diamines (14) (Scheme 5) [22149],
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Scheme 5. Formation of the trimethylsilyl (TMS) aziridinium ion with nonactivated aziridine and its subsequent ring

opening by iodine and amine for the synthesis of 1,2-diamines.

This method is quite good to introduce a mild nucleophile that is not reactive enough to break the aziridine ring. In
addition, TMS used for the activation of aziridine through an aziridinium ion is removed after addition of a
nucleophile to replace iodine when the reaction proceeds. This method has been used for the synthesis of many

biologically important molecules in our lab 29,

As shown in Scheme 1, an aziridinium ion for the activation of nonactivated aziridine is generated by adding an
alkyl group to aziridine nitrogen with the formation of quaternary amines. However, there is not an efficient method
to introduce an alkyl group without breakage of the highly ring-strained aziridine ring. In addition, this aziridinium
ion as a quaternary amine formed by an external alkyl group should be inert so that it does not react with the
counter anion of electrophiles after alkylation of the amine, i.e., the counter anion of the ammonium ion should not
have the nucleophilicity to break down three-membered ammonium ions. We successfully achieved formation of a
methylated aziridinium ion (16) by treating starting aziridine (15) with methyl triflate, taking advantage of the
extremely high nucleofugality of the triflate anion in a highly efficient manner. The formation of methylated
aziridinium ion was observed using H- and 13C-NMR spectra. This methylated aziridine easily reacted with proper
nucleophiles, whose regiochemical pathways were dependent on starting substrates. With simple alkyl substituents
R, the ring opening proceeded via pathway “a” for 17, while the starting material with vinyl or acyl at R gave
product (18) from ring opening via pathway “b” (Scheme 6) [41l. This was the first study to generate aziridinium ions
by methylation. We call this reaction “N-Methylative aziridinium ring opening”. This methylated aziridinium ion using
MeOTTf is stable. Such ring openings are possible with many external nucleophiles such as acetoxy, azide, hydride,
hydroxy, and nitrile to realize the N-methylamino alkyl products. They provide easy excess to target molecules. A
big advantage of this method is that N-methylamino compounds can be generated without an extra reaction to

introduce a methyl group at the nitrogen of target molecules, if necessary.
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Scheme 6. General scheme for “N-methylative aziridinium ring opening” of nonactivated aziridines.

This “N-methylative aziridinium ring opening” gives us an opportunity to obtain biologically important molecules
including MeBMT [21 tyroscherin 43, hygrolines, and their analogous alkaloids 4!, as well as a structurally

important part of drug candidate PF-00951966 43 as shown in Figure 3.
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Figure 3. Molecules synthesized from “N-methylative aziridinium ring opening” of nonactivated aziridines.

This method of “N-methylative aziridinium ring opening” can be expanded to other alkyl groups to be “alkylative
aziridinium ring opening”, including ethyl, allyl, and so on. Such studies are in progress in our lab. Benzylation of
aziridine to yield a benzylated aziridinium ion was successfully achieved by treatment with benzyl bromide, whose
bromine was released and reacted to give a brominated product. Its regiochemical outcome was derived from the
thermodynamic pathway. When the same substrate was treated with HBr, a protonated aziridinium ion was
generated, and subsequent ring opening occurred at C3 without any substituent, assuming that the regiochemical
pathway was dominated by the kinetic coordinate. These two contrasting regiochemical pathways stemmed from

different aziridinium ions by the addition of a benzyl group and a proton as electrophiles to the same aziridine
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(Scheme 7) 481, This distinctive regiochemistry taught us that it would be possible to control reaction pathways

according to the formation mechanism of the aziridinium ion (47148,
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Scheme 7. Ring-opening reactions of N-benzylaziridine as a nonactivated aziridine by BnBr and HBr with
formation of the aziridinium ions (20 and 22) and their products (21 and 23).

Many studies have reported the regioselectivity of ring-opening reactions of nonactivated aziridinium ions via
pathway “a” (nonsubstituted carbon C3, kinetically favored) or “b” (substituted carbon C2, thermodynamically
favored) depending on chemical aspects. When the aziridine ring has an allylic or benzylic C2—N1 bond as in 2-
vinyl or 2-phenylaziridines, ring-opening reactions proceed at the C2 position (pathway “b”) regardless of
electrophiles or nucleophiles. Ring opening with 2-acylaziridines takes pathway “b” with a few exceptions of
electrophiles and nucleophiles applied 47481 with 2-alkylaziridines, their reaction pathways are diversified
depending on the nature of electrophiles and nucleophiles. However, the reaction would warrant a kinetically
controlled ring-opened product at C3 (pathway “a”). According to experimental and theoretical data, including ours,
a general overview is provided in Table 1 as a practical guide to predict the regiochemical pathway of nucleophilic
nonactivated aziridines using different substrates, electrophiles, and nucleophiles. Bearing this in mind, it might
also be possible to predict a regioselective preference for unexamined ring-opening reactions of nonactivated 2-
substituted aziridines 2,

Table 1. Regioselectivity in ring opening of nonactivated 2-substituted aziridines either at C2 (pathway “b”) with a

substituent or at C3 (pathway “a”) without any substituent depending on the substrate, the electrophile, and the

nucleophile.
E* Lewis + + + .
Rl Acid RCO H R™ TMS
—CH=CH,, c2
—CH=CH- c2°¢ C2 - C2 C2

COOEt
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E* Lewis + + + N
R1 Acid RCO H R*™ TMS
Aryl c2 c2 c2 <
COR,
COOR, c3 c2 c2 c2 C2
CONH,
Alkyl C3 and/
y c3 andior o C3 (3

cz2

a Depending on the nucleophile (e.g., azide attacks at C2; alcohol attacks at C3). ® Among halides, only the fluoride

ion attacks the C3 position to a major extent. © Proposed regioselectivity (no experimental data available).

In the literature, there are ample examples for the activation for ring-opening reactions using a Lewis acid, one of
which is shown in Scheme 8. This scheme showed that an azide nucleophile could drive the aziridine ring (24) with
assistance of Lewis acid AICl5 in agueous medium to yield a-azido-B-aminopropionate (25) [50], which was utilized

for the synthesis of natural product biemamide (B) (26) [51].
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Scheme 8. Azide-induced ring opening of enantiopure N-phenylethylaziridine-2-carboxylate and its use for the

synthesis of biemamide (B).

2.2. Aziridinium lons upon Expulsion of the Leaving Group

For the last few years, Cossy’s group has extensively studied the synthesis of various compounds from the
formation of aziridinium ions, some of which were reported in a review article BB A typical method for
aziridinium ions comes from expulsion of the leaving group of hydroxides at B-hydroxy amines 22, One big
advantage of 3-hydroxyamine is that its enantiopure form is readily available from a rich chiral pool of amino acids.
Its stereoselective transformation can realize diverse enantiopure products starting from diverse chiral amino acids
B3l Transforming the alcohol moiety into a good leaving group has allowed the rearrangement of these B-amino
alcohols (27) to yield the aziridinium ion (28), which can then readily react with a large number of nucleophiles to
afford ring-opened products (29). An overview of recent progress realized for the rearrangement of these 3-amino
alcohols in the presence of catalytic amount (CF3C0O),0 and H,SO,4 or N,N-diethylaminosulfur trifluoride (DAST)
has been reported B4 This method has been applied for the synthesis of drug candidate LY-503430 (30) for
Parkinson’s disease (Scheme 9) 531,
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Scheme 9. Formation of aziridinium ion from -hydroxyamine followed by nucleophilic ring opening in the presence
of cat trifluoroacetate.

A similar reaction with the fluoride nucleophile yielded a fluorinated product after the formation of an aziridinium ion
driven by DAST 58, The synthesis of various optically active a-trifluoromethyl amines (33) was realized from -

amino-a-trifluoromethylalcohols (31) via an aziridinium ion intermediate (32) under a kinetic condition (Scheme 10)
15,
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Scheme 10. Preparation of a-trifluoromethyl amines or a-amino-B-fluorophosphonates bearing extra fluorine at the
o-position from the kinetically favored fluoride attack of an aziridinium ion intermediate formed from B-amino-a-
trifluoromethyl alcohols.

Recently, a report revealed that the same strategy is applicable to realize stereoselective and regioselective

synthesis of a-amino-B-fluorophosphonates (81,

Most aforementioned cases for the formation of an aziridinium ion took ionic pathways. Recently, photo-induced
single-electron transfer for olefin-diamination with alkylamines was successful (Scheme 11) 59, A useful protocol to

introduce two different amines at each site of olefin with an aziridinium ion as an intermediate was introduced 22
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Scheme 11. Photo-induced single-electron transfer for olefin-diamination with alkylamines.

The synthetic protocol consists of the formation of an aziridinium ion (36) from an amine (34) and olefin (35) via in
situ activation with N-chlorosuccinimide (NCS), protonation, and photo-induced SET (single-electron transfer)
reduction in the presence of a Brgnsted acid and Ru(bpy)s(PFg)> (1 mol%) as the photocatalyst in CH,Cl, solvent
under blue light irradiation at 0 °C. The following ring opening by another amine gives rise to vicinal diamine
compounds (37, 38).

2.3. Bicyclic Aziridinium lons from Substituted Aziridines

Instead of applying an external electrophile, aziridinium ions can be generated as bicyclic forms (40) through
displacement of a suitable leaving group at the side chain, as shown in (39) by nucleophilic aziridine amine
(Scheme 12) 89, Ring openings of these bicyclic aziridinium ions may occur due to nucleophilic attacks either at
the bridgehead or at bridge positions of aziridine to afford substituted aza-rings with substituents without loss of the
substrate’s stereochemistry. The regiochemistry was determined on the basis of the characteristics of the
nucleophile 61621 More specifically, bromide and iodide attached to the bridgehead, while nitrile and acetate
favored the bridge position [221231(62],
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39 40 41 42
n=01,2

Nu = Cl, F, N3, OAc, CN

Scheme 12. Generation of bicyclic aziridinium ions (40) from displacement of a suitable leaving group at the

aziridine side chain in 39 and subsequent ring-opening reactions to yield regioisomers (41 and 42).
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This convenient approach renders the construction of various types of aza-rings with substituents from nucleophilic
attacks either at the bridgehead or at bridge positions of bicyclic aziridinium ions without loss of the substrate’s
stereochemistry 83l This synthetic strategy can be used to obtain many biologically active alkaloids and their

analogues including fagomine, febrifugine, balanol, conine, and epiquinamide, as shown in Figure 4 [221[231[31](64]

H OH
g i |NH i
HO" N " N C TR
H
OH 0 H

AcHNY

Fagomine Febrifugine Balanol Fragment Conine Epiquinamide
Figure 4. Representative examples synthesized from Scheme 12 as a key step.

2.4. Bicyclic Aziridinium from Ring Contraction of Azaheterocycles

An aza-ring (43) with an appendage of hydroxymethyl at the a-position of amine engenders the bicyclic aziridinium
ion (44) with removal of the leaving group including a hydroxy group. This was further reacted with an applicable
nucleophile to yield new aza-ring products (45 and/or 46) via ring opening at the bridgehead (a) or the bridged (b)
position of the bicyclic aziridinium ion (44) (Scheme 13). Regarding the regiochemical pathway, whether the

reaction proceeds via pathway “a” or “b” depends on nucleophiles 62168167,
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Scheme 13. Formation of bicyclic aziridinium ion from aza-ring by removing the hydroxy group of hydroxymethyl at
the a-position and the subsequent ring opening by a nucleophile either at the suitably disposed bridgehead (a) or
at the bridge position (b) to lead products.

Application of various nucleophiles through pathway “a” or “b” gives an efficient synthetic strategy to prepare
various aza-cyclic valuables (Figure 5). Following pathway “a”, nonpeptidic NK-1 receptor antagonist L-733060 (48)
was realized starting from 3-hydroxy-2-phenyl piperidine (47) 2468l Most cases with diethylaminosulfur trifluoride
(DAST) have yielded enlarged fluorinated piperidine ring compounds (50) from hydroxymethylpyrrolidine (49) via

fluorine-driven ring opening in a stereoselective manner 6279,
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Figure 5. Representative examples of Scheme 13 following pathway “a” or “b” to prepare various aza-cyclic

valuables.

This reaction, generation, and ring opening of a bisaziridinium ion (52) from 3-hydroxy-3-trifluoromethyl piperidine
(51) with removal of the hydroxy group could also be applicable for the synthesis of biologically important o-
trifluoromethyl pyrrolidines (53) (Scheme 14) 71172,

OH CF
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e CHC Bn e
51 5 h, reflux 52 53

Nu = OH, OR, SR, X, CR, CN

Scheme 14. Preparation of 2-substituted methyl 2-(trifluoromethyl)pyrrolidines from ring contraction via

bisaziridinium ion with removal of the hydroxy group of 3-hydroxy-3-trifluoromethylpiperidine.
2.5. Aziridinium Ylides

Recently, aziridinium ylides were developed by the addition of electrons at the aziridine nitrogen in the starting
substrates to carbene or alkyne, followed by subsequent addition of an anion located at the a-position of the
carboxylate to the olefin to afford new rings via intramolecular ring-opening pathways. The schemes below
(Scheme 15 and Scheme 16) show the formation of aziridinium ylides (65 and 59) via intramolecular or
intermolecular addition of diazoacetate (54 or 58) to aziridine (54 or 57) with metal catalysts. Subsequent ring

openings initiated by the anion at the a-position of carboxylate give ring-expanded products (56) and (60) [Z2IZ475],

CHE_CN
reflux

E10, CJK(\ i Cuf ac:ac.}g

54
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Scheme 15. Formation and ring expansion of aziridinium ion generated from intramolecular Cu(ll)-catalyzed

aziridinium ylides.

O

L o
N
N~ O 2 Rhs(OAc); | MeO:CF@
— b G e
H'l = R GDEME CHECIE —
H 2 h, rt R ™~
H
57 58 59 60
R'=H, Me
R% = Me, ‘Bu

Scheme 16. Formation and ring expansion of aziridinium ion generated from intermolecular Rh-catalyzed

aziridinium ylides.

The addition of carbene generated by Rh in an intermolecular manner was reported by Rowland with limited
examples 78, This has been developed to a great extent by Schomaker’s group, whose representative example is
shown in Scheme 17 Y. The formation of aziridinium ylide (63) was created by adding carbene from diazoacetate

(62) to aziridine (61), whose aziridine ring was opened to give an expanded aza-ring (64).

8] N Rz COE)ME
2
o Rhy(OAc), H
R N 0 + 2‘-\“\"‘)"‘ ﬁj\‘ﬂ .
R CO;Me  CH,CI L1 B
2z R %l\) R T H
H rt i R
61 62 64

R'=Me, Et, ‘Pr, C4Hg, Bn o
R? = Me, 'Pr, Ph,Cyclohexyne

Scheme 17. Ring expansion of aziridines via aziridinium ylides to dehydropiperidines.

Another interesting formation of aziridinium ylide (67) was reported by Yudin’s lab using the reaction of aryne from
1-iodo-2-sulfonyloxybenzene (66) with 2-alkenylaziridine (65). This was followed by anionic rearrangement to
produce benzazepine (68) with a good yield (Scheme 18) 8,

'PrMgClI
0SOAr LiCl
/4)\,1 —@[ _(165eq)
Etzﬁ
&5 TA°C -t

R'=Bn,Cy,PNB S= F. OMe,
R' R?=H, Me CO;Me
R*=H, Ph

https://encyclopedia.pub/entry/9025 14/21



Synthetic Applications of Aziridinium lons | Encyclopedia.pub

Scheme 18. Formation of aziridinium ion by adding aryne to aziridine and subsequent strain-release cycloaddition

reaction.

It has been disclosed that the addition of electron-rich nitrogen at the nonactivated aziridine (69) to alkyne (70) can
make an aziridinium ylide (71) whose anionic olefin can attack the vinyl group, thus giving rise to various
substituted benzazepines (72) (Scheme 19) 721,

R RS
R1
' RL @J‘\x/ R4 R R4
N + Ri—=—_RS EFg'DEtL N" o N™ ™%
ﬁ_\ CH.Cl, ugg _ R3
RZ R? ehe | g g R2
69 70 71 72

R' =Bn, ‘Pr, ‘Bu, Cyclohexyle

R? = H, Ph, 4-OMePh, 4-BrPh, C,Hs, 'Pr
R3 = H, CO;Me, COMe

R* R® =H, COEt, CO;Me

Scheme 19. Addition of aziridine-nitrogen to alkyne to form aziridinium ion and its release to give azopanes.

Recently, an interesting reaction was developed to generate a reactive zwitterionic aziridinium intermediate (74)
from the reaction of N-propargyltetramethylpiperidine (73) with trans-alkenyl-B(CgF5), compounds via trans-1,2-
amine/borane addition to a carbon—carbon triple bond. Subsequent alkenylborate attack with ring opening to the
activated three-membered aziridinium ion afforded a stable boronated alkenyl piperidine resonance between (75)

and (76), as shown in Scheme 20 89,

R
N {CEFE}EEI &}@ /—/R s

N\ R=Ph, N @B(CeFﬁ}z

C(CHa)=CH, L .
73 FBu 74
/ R
B(CsFs)2
75 76

Scheme 20. A reactive zwitterionic aziridinium intermediate from the reaction of N-propargyltetramethylpiperidine

with trans-alkenyl-B(CgFs), compounds and subsequent alkenylborate attack with ring opening to the activated
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three-membered aziridinium ion.
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