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Functional amyloids can be found in bacteria, unicellular eukaryotes, fungi, plants, insects and vertebrates, playing roles

as diverse as surface protection and modification, mediation of pathogen-host interactions, pigment biosynthesis,

homeostasis control, hormone storage and release, signal transduction, among others. The aggregation of a polypeptide

chain into amyloid fibrils and their accumulation and deposition into insoluble plaques and intracellular inclusions is the

hallmark of several misfolding diseases known as amyloidoses. Alzheimer′s, Parkinson′s and Huntington’s diseases are

some of the approximately 50 amyloid diseases described to date.
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1. Background

The conversion of normally soluble proteins into insoluble and highly stable amyloid deposits has become the focus of

attention by researchers from diverse scientific fields, from physics to chemistry, from biology to medicine. This interest

results from the recognition that many of the diseases related with amyloid formation are amongst the most common and

debilitating disorders of the modern era . Many of these disorders are strongly associated with ageing, such as

Alzheimer’s disease (AD) and wild-type TTR amyloidosis (ATTRwt), formerly known as senile systemic amyloidosis

(SSA). Alzheimer’s disease affects approximately 50 million people worldwide and it is estimated that this number will

exceed 150 million in 2050 . Wild-type TTR amyloidosis affects more than 25% of people over 80 years old, and the

disease is becoming more common due to the fast growth of the average age of world population and the increased

awareness of medical doctors and positive diagnosis of the disease . Presently, there are approximately 50 known

amyloid disorders generally referred as protein conformational diseases, misfolding diseases or amyloidosis, with a

multitude of distinct symptoms, which are associated with the misfolding and aggregation of several peptides or normally

soluble and functional proteins. Table 1 lists some of the amyloid diseases and associated proteins that have been

identified to date . In the case of local amyloidosis, the amyloid deposits are observed in the organ/tissue where the

precursor protein is synthesized; whereas in systemic amyloidosis, the deposition of aggregates and fibrils occurs at

locations different than the sites where the precursor protein is expressed .

Table 1. Human diseases associated with protein misfolding and amyloid aggregation .

Disease Precursor Protein Polypeptide Length (n°
of Residues)

Structural Organization
of Precursor

Neurodegenerative Diseases

Alzheimer’s disease Amyloid-β variants 37–44 IDP

Spongiform encephalopathies Prion protein or its fragments 208 IDP and α-helical

Parkinson’s disease α-synuclein 140 IDP

Frontotemporal dementia with
Parkinsonism Tau 352–441 IDP

Amyotrophic lateral sclerosis Superoxide dismutase 1 153 β-sheet

Huntington’s disease Huntingtin with polyQ expansion 3144 Mostly IDP

Neuroferritinopathy Ferritin 175 or 183 α-helical

Familial British dementia ABri 34 IDP

Familial Danish dementia ADan 34 IDP
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Disease Precursor Protein Polypeptide Length (n°
of Residues)

Structural Organization
of Precursor

Familial amyloid polyneuropathy Transthyretin variants 127 β-sheet

Non-Neuropathic Systemic Amyloidosis

Amyloid light chain amyloidosis Immunoglobulin light chains or
its fragments ~90 β-sheet

Amyloid heavy chain
amyloidosis

Immunoglobulin heavy chains or
its fragments ~220 β-sheet

Amyloid A amyloidosis Serum amyloid A protein
fragments 45–104 α-helical and unknown

fold

Familial Mediterranean fever Serum amyloid A protein
fragments 45–104 α-helical and unknown

fold

Apolipoprotein A1 amyloidosis Apo A-1 fragments 80–93 IDP

Senile systemic amyloidosis Wild-type transthyretin 127 β-sheet

Familial amyloid cardiomyopathy Transthyretin variants 127 β-sheet

Haemodialysis-related
amyloidosis β -microglobulin 99 β-sheet

Lysozyme amyloidosis Lysozyme variants 130 α-helical and β-sheet

Finnish hereditary amyloidosis Fragments of gelsolin variants 53 or 71 IDP

Non-Neuropathic Localized Amyloidosis

Type II diabetes Islet amyloid polypeptide 37 IDP

Injection-localized amyloidosis Insulin 21 and 30 α-helical

Gelatinous drop-like corneal
dystrophy Lactoferrin 691 α-helical and β-sheet

Medullary carcinoma of the
thyroid Calcitonin 32 IDP

Localized cutaneous
amyloidosis Galectin 7 136 β-sheet

Atrial amyloidosis Atrial natriuretic factor 28 IDP

Cataracts γ-crystallins variable β-sheet

IDP: Intrinsically disordered protein.

As the name suggests, protein misfolding is associated with the formation of an altered protein fold relative to the native

structure of a protein. Misfolding can occur as a consequence of several events : (1) mutations in the gene

sequence leading to the production of a protein unable to adopt the native fold; (2) errors in the processes of transcription

or translation leading to the production of modified proteins unable to properly fold; (3) failure of the chaperone machinery;

(4) mistakes on post-translational modifications or intracellular trafficking of proteins; (5) structural modifications produced

by environmental changes; (6) seeding and cross-seeding by pre-formed aggregates or surfaces. Additionally, protein

misfolding generally leads to protein aggregation, with specific interactions occurring between intermediate molecular

species that tend to form large ordered aggregates, which may evolve into amyloid fibrils which might deposit in the form

of insoluble extracellular plaques or intracellular inclusions.

2. Protein Aggregation

In addition to their native structure that intimately correlates with function, proteins also coexist in other states, including

disordered, partially unfolded, or multiple aggregation assemblies. Figure 1 summarizes the most relevant protein states,

from a mechanistic and biological point of view.
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Figure 1. Schematic representation of the variety of conformational states that can be adopted by a polypeptide chain

upon biosynthesis in the ribosome. The non-amyloidogenic pathway includes the formation of native sates and functional

amyloids. The amyloidogenic pathway associated with pathological states can result from the formation of amorphous

aggregates, amyloid aggregates and fibrils, and native-like aggregates. Adapted from reference .

In a functional living system, the multiple conformational states adopted by proteins involve an extremely complex series

of thermodynamic equilibria and kinetic barriers, which ultimately are defined by the protein amino acid sequence.

Although their intrinsic amino acid sequences and biological environments in which proteins function have co-evolved to

preserve proteins in their native and soluble states (non-amyloidogenic pathway), in some conditions, proteins can

interconvert into non-functional and cytotoxic protein aggregates (amyloidogenic pathway) (Figure 1) .

Protein aggregation has been shown to involve natively unfolded or intrinsically disordered systems, such as in amyloid-β

(Aβ) peptide in Alzheimer’s disease, or even folded or globular proteins, such as in transthyretin (TTR) associated

amyloidoses, where the misfolding process occurs through the formation of partially unfolded states (Table 1and Figure
1). In most cases, the oligomeric species formed during the amyloidogenic pathway are assemblies of monomeric units.

Such aggregates can adopt highly disordered structures, well-defined fibrils with cross-β structure, or also native-like

conformations, when originated from unfolded, partially unfolded, or folded monomeric states, respectively (Figure 1). All

these types of aggregates have connections with amyloid disorders as they accumulate in well-characterized pathological

states and represent a significant manifestation of the multiplicity of mechanisms, structures and morphologies observed

during protein aggregation and disease progression (Table 1) .

Although the term “amyloid” is often associated with amyloid diseases, the amyloid state can also be present in functional

biological processes and contribute to normal cell and tissue physiology (Figure 1). Functional amyloids can be found in

bacteria, unicellular eukaryotes, fungi, plants, insects and vertebrates, playing roles as diverse as surface protection and

modification, mediation of pathogen-host interactions, pigment biosynthesis, homeostasis control, hormone storage and

release, signal transduction, among others .
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3. Amyloid Fibrils

In 1854, Rudolph Virchow found a macroscopic tissue abnormality that exhibited a positive iodine staining reaction,

suggesting the presence of starch or amylin like material (from amylum in Latin and amylon in Greek). He then suggested

that the abnormal deposits could be cellulose in origin and coined the name “amyloid”. Friedrich and Kekule, in 1859,

showed that the deposits were actually protein aggregates, but the designation remained and is still used today . Thus,

abnormal accumulations of insoluble highly ordered and fibrillar protein structures in tissues and organs, such as in

“misfolding diseases” (Table 1), are known as amyloid fibrils (Figure 1). No sequence, structural or functional correlations

are apparent between many of the proteins that display the ability to form amyloid fibrils. The number of amino acids is

diverse ranging, for example, from 37 to 44 in Aβ peptide to 691 in lactoferrin (Table 1). Despite these dissimilarities,

amyloid fibrils from different protein precursors share many common structural features, namely, the formation of long,

unbranched filaments with a cross-β structural motif .

3.1. The Tinctorial Properties of Amyloid Fibrils

From the early days in amyloid research, molecular probes have been used in order to both characterize the mechanisms

of amyloid fibril formation, and detect the presence of amyloid in tissues and samples, taking advantage of the distinctive

structural features and tinctorial properties of the amyloid material. These molecular probes display changes in

spectroscopic properties upon binding to amyloid fibrils. Usually, they are aromatic heterocyclic compounds, some of

which toxic . Congo red (CR) and thioflavin-T (ThT), shown in Figure 2, are the most commonly used dyes to identify

amyloid material and study amyloid aggregation .
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Figure 2. Chemical structures of Congo red, thioflavin-T, and some of their derivatives used in amyloid fibril detection.

Since the beginning of the 1920s, Congo red has been used for detection of amyloid fibrils. Upon binding to amyloid

fibrils, CR displays green birefringence under polarized light, which is associated with a characteristic red shift in the

absorbance maximum (from 490 to 512 nm), and presence of a characteristic shoulder peak at approximately 540 nm

[ ]. CR is the most commonly applied dye in the identification of amyloid in ex vivo tissue slices, using mainly

polarization microscopy, but also light microscopy [ ] and fluorescence microscopy [ ]. However, compared to ThT, CR

is less sensitive in the detection of amyloid fibrils [ ]. In addition, CR interferes with the aggregation mechanisms and is

not appropriate for in situ detection, since it is known to inhibit or to enhance amyloid fibril formation depending on the

protein .

More recently, thioflavin-T became a standard dye for amyloid detection showing fluorescence enhancement upon

interaction with amyloid deposits in tissue sections . ThT fluorescence emission increases upon binding to amyloid

fibrils, with excitation at 450 nm and emission maxima at 482 nm, as opposed to excitation at 385 nm and emission

maxima at 445 nm for the free dye .
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Besides ThT and CR, other compounds have been also used for the detection of amyloid fibrils . The search

for novel, more sensitive and blood–brain barrier crossing dyes for detecting the initial stages and more toxic oligomeric

species involved in fibril formation in vitro, ex vivo and in vivo is still under way . Nevertheless, several related

structures or derivatives of both CR  and ThT  have been shown to be quite helpful for both in vitro

and ex vivo identification of amyloid fibrils (Figure 2).

The binding mode of the molecular probes to amyloid fibrils is not fully understood. In the case of ThT and CR, a large

number of studies examined binding modes and suggested the existence of a binding interface parallel to the long axis of

the fibril .

Features as fibrillar morphology, cross-β structure, and characteristic tinctorial properties are nowadays accepted as

benchmarks for defining “amyloid materials”, and any given protein aggregates need to display most of them to be

classified as such. In a recent recommendation, the International Society of Amyloidosis (ISA) nomenclature committee

suggests the following classification for amyloids based on five main classes, in order to distinguish different natural and

synthetic amyloid-like materials: (1) in vivo and ex vivo disease-related fibrils; (2) in vivo and ex vivo functional fibrils; (3)

recombinant fibrils of disease-related proteins or functional amyloid proteins; (4) fibrils from synthetic or non-disease-

related peptides; and (5) fibrils from hydrogels that produce the cross-β diffraction pattern .

3.2. Structure of Amyloid Fibrils at the Subunit Level

Since the cross-β motif was identified , many studies have been performed to characterize the structure of amyloid

fibrils, using different experimental techniques. The combination of all these data has contributed to reveal the structure of

amyloid fibrils on a multi-scale basis and to show how individual protein subunits can form cross-β structures.

The structural feature which all amyloid fibrils share is the cross-β motif, characterized by extended β-sheets with

individual β-strands arranged in an orientation perpendicularly to the fibril main axis. Amyloid fibrils are unbranched

structures with diameters ranging from 2 to 20 nm and usually present several micrometers in length . The

existence of a repeating cross-β structure was first demonstrated in the late 1960s by X-ray fiber diffraction studies ,

and later synchrotron X-ray diffraction studies have shown that amyloid fibrils from different amyloid proteins exhibit the

same cross-β diffraction pattern . Characteristic amyloid fibril diffraction patterns show a meridional reflection at 4.7–4.8

Å corresponding to the hydrogen bonding distances found between paired carbonyl and amide groups in adjacent β-

strands, and an equatorial reflection at 6–11 Å corresponding to the distance observed between stacked β-sheets .

Amyloid fibrils from different origins contain a common cross-β spine formed by a pair of β-sheets with the facing side

chains of the two sheets interdigitated in a steric zipper . Steric zippers are thus short peptide segments which provide

the structural basis for the hierarchical assembly of an amyloid fibril . In this sense, stacks of steric zippers are

needed to form the cross-β spine of the amyloid protofilament (Figure 3) , which constitutes the basic unit of the

mature fibril, whereas the rest of the polypeptide chain assumes either native-like or random coil conformation in a

peripheral position to the spine .
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Figure 3. The ten possible amyloid symmetry classes of homo-steric zipper amyloid spines. Legend: face (F), back (B),

up (U), down (D), N-terminal and C-terminal. Adapted from reference .

Nevertheless, significant variations may be found among the structural arrangement of steric zippers. Assembly of the

strands in a sheet produces four patterns of sheet symmetry (parallel versus antiparallel, and antifacial versus equifacial).

These four β-sheet patterns are each capable of self-pairing to form cross-β spines. Thus, in total, ten distinct symmetry

classes of steric zippers can be enumerated. These classes are distinguishable by the particular sheet pattern and by the

symmetry operation that relates the pair of sheets (Figure 3) .

Mature fibrils also reveal a periodic structure due to the twist of multiple protofilaments around each other. The helical

twist of the protofilaments can give rise to a discernible overall helicity of the mature amyloid fibril. Although the basic

structural arrangement of the cross-β structure is conserved in different fibrils, there are different possibilities of how

protofilaments can pack into the three-dimensional fibril structure, giving rise to several distinct amyloid fibril

morphologies. It is possible to distinguish amyloid fibril polymorphism based on the degree of fibril twisting, the number of

protofilaments per fibril, and the diameter or weight per length of the fibrils . In addition to amino acid composition,
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the fibril morphology is determined by environmental factors, such as pH, temperature, mechanic agitation, shear force,

ionic strength or presence of other co-solutes and co-solvents .

Amyloidogenic regions or short segments forming steric zipper spines in amyloid fibrils are possible to identify/predict by

submitting a protein sequence to specific algorithms and web services. Table 2 summarizes the computational tools

available online and reported in the literature to predict propensities or incidence levels of a given amino acid sequence to

form amyloid fibrils.

Table 2. Available online methods to predict amyloidogenic regions in amino acid sequences.

Method Website References

AGGRESCAN http://bioinf.uab.es/aggrescan/

AGGRESCAN3D http://biocomp.chem.uw.edu.pl/A3D/

AmyLoad http://comprec-lin.iiar.pwr.edu.pl/amyload/

AmyloGram http://www.smorfland.uni.wroc.pl/shiny/AmyloGram/

AmyloidMutants http://amyloid.csail.mit.edu/

AMYLPRED http://biophysics.biol.uoa.gr/AMYLPRED

AMYLPRED2 http://biophysics.biol.uoa.gr/AMYLPRED2

APPNN http://cran.r-project.org/web/packages/appnn/index.html

BetaScan http://groups.csail.mit.edu/cb/betascan/betascan.html

ClinVar https://www.ncbi.nlm.nih.gov/clinvar/

Fibpredictor http://nanohub.org/resources/fibpredictor

FISH Amyloid http://www.comprec.pwr.wroc.pl/COMPREC_home_page.html

FoldAmyloid http://bioinfo.protres.ru/fold-amyloid/oga.cgi

GAP http://www.iitm.ac.in/bioinfo/GAP/

GOR V http://gor.bb.iastate.edu/

MetAmyl http://metamyl.genouest.org/

MILAMP http://faculty.pieas.edu.pk/fayyaz/software.html#MILAMP

NetCSSP http://cssp2.sookmyung.ac.kr/index.html

PASTA http://protein.cribi.unipd.it/pasta/

PASTA 2.0 http://protein.bio.unipd.it/pasta2/

RFAmyloid http://server.malab.cn/RFAmyloid/

SNPeffect 4.0 http://snpeffect.switchlab.org

STITCHER http://stitcher.csail.mit.edu

TANGO http://tango.crg.es/

Waltz-BD http://waltzdb.switchlab.org

ZipperDB http://services.mbi.ucla.edu/zipperdb/submit

Zyggregator http://www-vendruscolo.ch.cam.ac.uk/zyggregator.php

3.3. The Cross-α Amyloid-Like Fibril

Cross-β motifs and amyloid fibrils can be formed both by β-sheet rich and α-helical proteins. Alpha-helical conformations

have also been associated to amyloid fibril formation. Certain peptides and proteins that present well defined α-helical

structures undergo conformational changes into β-pleated structures that in turn aggregate into amyloid fibrils 

, while other peptides or proteins maintain its α-helical conformation during the aggregation cascade, forming

“cross-α” structures. Cross-α structures are also formed by elongated unbranched fibrils, and display the ability to bind

thioflavin-T with the characteristic enhanced fluorescence emission. These fibrils result from the stacking of α-helices
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perpendicular to the fibril axis . The cross-α structure, although rare, was found in the functional amyloid phenol

soluble modulin α3 (PSMα3) , in the yeast prion Ure2p , in de novo-designed amphiphilic peptides ,

and among proteins of multiple tandem copies of a helix–loop–helix unit .

3.4. Hetero-Amyloid Fibrils

The terms “hetero-amyloid” or “hetero-fibrils” relate to amyloid fibrils structures formed by two different β-sheets along a

compact hydrophobic interface, featuring an unusual ladder of sequential stacking. The hetero-fibril is stabilized by

hydrophobic packing and enriched with interactions along the fibrillar axis, such as hydrogen bonds between neighboring

β-strands, analogous to homo-amyloids. This type of amyloid structure was found in the interaction between the M45

protein with other proteins, namely the receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3), and the Z-DNA

binding protein-1 (ZBP1) ; as well as in the RIPK1-RIPK3 necrosome human signaling complex .

In addition, it has also been observed that some amyloidogenic proteins may support cross-seeding by amyloid

aggregates of different proteins, building a link between different amyloid forms. Heterologous cross-seeding has been

reported between amyloid-β peptide (Aβ) and islet amyloid polypeptide , Aβ and prion protein (PrP) , and Aβ

and α-synuclein . Furthermore, Aβ fibrils also induce the formation of tau neurofibrillary tangles in vivo , and Aβ

aggregates promote tau aggregation in vitro . Heterologous cross-seeding was also found when tau K18 interacts with

the C-terminus of α-synuclein , when functional amyloids curli and Sup35 induce amyloid protein A amyloidosis ,

when PrPs promote Sup35 aggregation , and when the in vitro aggregation of CsgA is seeded by CsgB fibrils .

Moreover, the observation of heterologous cross-seeding cases suggests that interactions between different

amyloidogenic proteins might enhance the onset of certain types of amyloidoses.

3.5. The Major Differences between the Techniques that Inform on Amyloid Structure

Recent progresses in instrumentation have improved quite significantly the ability to characterize the structure of complex

biological molecules and macromolecular complexes. The knowledge of the three-dimensional structure of amyloid fibrils

from different origins provides important insights into the mechanisms of amyloid formation, and thereby helps in the

rational design of novel therapeutic agents. The combination of structural biology data from several approaches and

experimental techniques provides new insights on how individual protein subunits form fibrillar structures, at an atomic

level of resolution. In the past decades, many structural biology studies have been performed based on X-ray fiber

diffraction , X-ray crystallography , solid state NMR (ssNMR) , and cryo-electron microscopy (cryo-EM) , to

mention just a few. Table 3 reports the main differences between these powerful techniques. However, is important to

mention that no method is completely effective by itself, since all of them offer unique advantages and limitations.

Table 3. The pros and cons of the main methods that inform on amyloid structure at atomic level resolution.

Technique Advances Advantages Disadvantages References

X-ray and
electron

diffraction

1. Discovery of short protein
segments that can themselves
form amyloid fibrils and closely
related crystals;
2. Development of synchrotron X-
ray microbeams sufficiently
focused and intense to determine
a structure from a single crystal.

1. May yield atomic
resolution;
2. Is not limited by the
molecular weight of the
specimen.

1. Well-ordered
microcrystals needed;
2. The fibrils formed by
some segments may
represent the spines of
polymorphs of full fibrils,
but others may not;
3. The crystallized
segment is only a few
residues in length, thus
nothing is revealed about
the fibril structure
outside the spine;
4. The steric zippers
structures only show
homo-steric zippers.
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Technique Advances Advantages Disadvantages References

ssNMR

1. Innovations in high-field
magnets, pulse sequences, high-
resolution multi-channel magic-
angle spinning (MAS) probes,
ultrafast MAS, isotopic labeling
schemes, use of quadrupolar
nuclei as spectroscopic probes
and solid-state dynamic nuclear
polarization (DNP).

1. No need for crystals;
2. Structural information
obtained on: identity of
residues, recognition of
parallel versus antiparallel β-
sheets, register of strands
within a sheet, and inter-
residue contacts of amino
acid side chains;
3. ssNMR-determined models
show the overall
conformation of the well-
ordered portion of the chain
around the protofilament
spine;
4. Can be used to determine
dihedral angles and inter-
atom distances in the fibril
subunits.

1. Amyloid-forming
proteins are expressed
recombinantly from
media containing
isotopically labeled
amino acids;
2. Reliability of molecular
models is highly
dependent on the number
of experimental
constraints that have
been collected;
3. The relative positions
of atoms are not as
accurately determined as
in an atomic-resolution
crystal structure;
4. The sensitivity of the
experiments and spectral
resolution decrease with
the increase in molecular
weight.

cryo-EM

1. Introduction of high-field
microscopes;
2. New generation of direct
detectors record the incident
electrons in a thin, sensitive layer
so that the signal is not scattered
into surrounding pixels resulting
in an improvement in image
processing.

1. Near atomic-resolution
structures of large molecular
complexes without the need
for crystals;
2. May yield the overall fibril
structure: the number of
protofilaments; the degree of
twist; and, depending on the
number of well-ordered
specimens, information on
the atomic structure of the
fibril.

1. Due to a lack of
contrast, images often
have a very low signal-to-
noise ratio, requiring
highly advanced
detection hardware and
image processing;
2. Sample preparation
can be difficult, not only
to optimize thickness,
but also to optimize
particle distribution;
3. The most advanced
cryo-EM equipment is
very expensive.

4. Toxic Species in Amyloid Diseases

The pathogenic or the most toxic species in amyloidosis can result from extracellular amyloid fibrillar deposits affecting

organ integrity , as in the case of cardiac amyloid in transthyretin amyloidosis, and/or soluble protein

oligomers that can either populate during the process of amyloid fibril formation or be released by mature deposits

causing direct cellular dysfunction , as in the case of several neurodegenerative amyloid diseases.

Although the β-sheet structure present in amyloid oligomers is a favorable structural component, it is not an important

prerequisite for toxicity . The structural determinants by which these misfolded oligomers cause cellular damage may

be related with the exposure of hydrophobic groups on the oligomer surface  and with the small size of the

oligomers with high diffusion coefficient . Thus, the toxicity of amyloidogenic oligomers is likely to be a result of

their intrinsic misfolded nature and aggregation propensity . Such structural properties will cause them to engage

in a multitude of abnormal interactions with a range of cellular components, such as phospholipid bilayers, soluble

peptides and proteins, protein receptors, RNAs, and cellular metabolites  where some or all of them

have the potential to cause cell damage and ultimately cell death. In fact, it is known that several amyloid

neurodegenerative diseases have an important inflammatory component which may be the result of the natural response

against the “unknown” molecular species formed during the amyloidogenic cascade or against by-products of their action.

5. Kinetics and Thermodynamics of Amyloid Fibril Formation

The aggregation mechanisms in amyloid systems are prone to multiple pathways, depending on the ensemble of co-

existing amyloidogenic conformations and environmental factors. Thus, several aggregation mechanisms and multiple

pathways have been described depending on protein sequence, conformational states adopted by the amyloidogenic

monomer and experimental conditions (for instance, temperature, pH, protein concentration, and solvent effects). The

aggregation processes take place over a wide time range, spanning several orders of magnitude, with conformational

changes occurring in the milliseconds and formation of particles observable with the naked eye in days, weeks or months.

Elucidation of the mechanisms of amyloid formation and characterization of the most relevant molecular species involved

[127][129][130]

[131][132][133]

[134][135][136][137]

[137]

[138]

[139][140]

[140][141]

[137][142]

[139][143][144][145][146][147]



are crucial to devise new rational therapeutic strategies against amyloid diseases. A brief overview of the most common

amyloid formation mechanisms is presented in Figure 4, and a summary of the events and conditions that may trigger

protein aggregation is shown in Table 4.

Figure 4. Representative general model for amyloid fibril formation by nucleation-dependent mechanisms (including

primary and secondary nucleation) and nucleation-independent mechanisms (absence of nucleation). k , k , k , k , k ,

and k  represent rate constants. The stationary phase involves the assembly of protofibrils into mature amyloid fibrils with

different morphological structures and a high level of polymorphism. Adapted from reference .

The aggregation kinetics of amyloidogenic proteins is highly dependent on protein concentration, and may reflect a

nucleation-dependent or a nucleation-independent process (Figure 4) .

Table 4. Early events that may lead to amyloid fibril formation.

Nature of Monomeric
Species Description References

Native
monomer

Normally folded proteins may retain a substantial tendency to aggregate
through direct assembly of monomers in their native state when the native
state exposes complementary surfaces.

Conformationally
altered monomer

The native monomer has very low propensity to associate. Partial unfolding
or conformational changes of the native monomer are required, resulting in a
non-native species prone to aggregate.

Chemically modified
monomer

Chemical modifications (deamidation, isomerization, hydrolysis, oxidation,
photolysis, etc.) may cause conformational changes in native monomers,
leading to species with high propensity to aggregate.

Nature of Aggregation
Interfaces Description References

Gas-liquid
interface

Hydrophobic–hydrophilic interfaces may induce aggregation reactions.

Mechanical stress (agitation, stirring, pumping, or shaking) has been
associated with cavitation which generates air bubbles and, consequently,
the formation of an air-water interface which facilitates protein denaturation
and aggregation.

The use of beads during agitation accelerates the aggregation process by
enhancing cavitation.

n1 n2 − on off
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Solid-liquid
interface

Solid-liquid interfaces may facilitate monomer encounters and initial
monomer to monomer association and later further aggregation.  

In vitro, interaction with glass, silicone, graphite, polypropylene, Teflon, mica,
gold, etc. might lead to protein partial unfolding and aggregation.

In vitro and in vivo, flow through tubes and vessels produce shear forces that
may lead to protein partial unfolding and aggregation.

Freeze-thaw cycles create new ice-water interfaces which may induce protein
partial unfolding and aggregation.

Presence of metal ions, in particular, Cu  and Zn , may promote
aggregation of protein monomers bearing metal-ion binding sites or binding
residues (e.g., histidines).

Monomer association at the surface of biomembranes or biomolecules may
also enhance aggregation.

 

5.1. Aggregation Via a Nucleation-Dependent Mechanism

The nucleation-dependent mechanism of amyloid formation (Figure 4), also known as nucleation–elongation

polymerization, displays a typical sigmoidal shape curve as a function of time and consists of three consecutive steps: (1)

initial lag or nucleation phase; (2) elongation, growth, polymerization, or fibrillation phase; (3) equilibrium, stationary, or

saturation phase .

The nucleation phase corresponds to the assembly of transient, critical nuclei that next will act as seeding intermediates

where additional monomeric subunits can latch on, driving the assembly of oligomers with cross-β structure. At this stage,

the rate constants for monomer addition and dissociation are similar, making the global process of nucleation slow and the

rate limiting step in fibril formation. The nucleation phase can be shortened or eliminated by the addition of pre-formed

aggregates or fibrillar species, a process known as seeding . In the elongation phase, monomers, nucleus and

oligomers continue to interact, assembling into prefibrillar structures that rapidly grow to form ordered fibrillar structures

known as protofibrils. Because this phase gives rise to more stable protofibrils, this is a faster and thermodynamically

favorable process. Lastly, the saturation phase, where monomer concentration is low and approximately constant,

involves the assembly of protofibrils into mature amyloid fibrils with different morphological structures and different levels

of polymorphism.

The Finke–Watzky aggregation model (Scheme 1) is one of the numerous models proposed for nucleation–elongation

polymerization and has been applied to more than 40 different aggregating proteins . As shown in Scheme 1, the

Finke–Watzky model consists of two simple steps: (1) nucleation and (2) growth. Due to its simplicity, this model does

have some limitations, including: (1) a vast number of aggregation steps is condensed into two elementary steps; (2) the

rate constants, k  and k , are average rate constants and independent of the size of aggregating species; (3) a

higher kinetic order in [M] may be kinetically hidden in the nucleation step in particular; (4) all growing polydisperse

aggregates are hidden behind the descriptor “A ”; (5) the descriptor “A ” can also hide processes such as fragmentation.

However, the simplicity and quality of the fits obtained in many practical examples suggest that the Finke–Watzky two-

step mechanism encompasses the main characteristics and it is a good general kinetic model for nucleation-growth

aggregation.

Scheme 1. The minimalistic Finke–Watzky mechanism for protein aggregation via a nucleation-dependent pathway,

where M is the monomer, and A is the transient nucleus aggregate. The rate constants for the nucleation and growth

steps are k  and k , respectively .

5.1.1. Primary Nucleation Mechanisms
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In the amyloidogenesis cascade, primary nucleation is a critical step in a variety of oligomerization mechanisms and

includes the initial formation of amyloidogenic nuclei without contributions from pre-formed oligomers. Two types of

primary nucleation mechanisms have been described: homogeneous and heterogeneous. Homogeneous primary

nucleation comprises monomers aggregation in bulk solution, while heterogeneous primary nucleation involves

association of monomeric subunits on the surface of a different object, such as the wall of a reaction container 

, other proteins [202], phospholipid bilayers , or the air–water interface 

.

From a structural point of view, the simplest manifestation of a primary nucleation mechanism is the nucleated

polymerization (NP) mechanism. In this case, amyloidogenic monomers aggregate and originate the nucleus, which

further grows into amyloid protofilaments and protofibrils through an elongation process involving mostly monomer

addition . This is the preferential mechanism at relatively low protein concentrations favoring the presence of

monomeric species in solution.

However, in several instances, it has been observed the presence of multiple conformational heterogeneous oligomers

and transient intermediate species during fibril formation which NP mechanisms cannot explain. In these cases, a

nucleated conformational conversion (NCC) mechanism has been proposed. NCC comprises structurally organized

oligomers as intermediates which are able to subsequently conformationally transition into cross-β dominated fibrillar

species. The formation of these conformationally dynamic oligomers may be favored at higher protein concentrations and

they undergo a rate-limiting conformational change to form protofibrils and then amyloid fibrils . This type of nucleation

was observed, in particular, in the yeast prion protein (Sup35) , among variants of the amyloid-β peptide ,

SH3 domain , Ure2p yeast prion , polyglutamine (polyGln) peptides , and lysozyme .

5.1.2. Secondary Nucleation Mechanisms

Although conceptually appealing and observed in several instances, a simple homogeneous primary nucleation

mechanism is not always observed . Several studies have pointed out that simple homogeneous nucleation

could not fit certain experimental aggregation kinetics data . Simple homogeneous primary nucleation does not

take into account other nucleation mechanisms and events, such as fibril-catalyzed secondary nucleation (a monomer-

dependent process) and fibril fragmentation (a monomer-independent process) (Figure 4), both contributing to the

formation of new aggregation nuclei . In fibril-catalyzed secondary nucleation nucleus formation occurs

on the surface of an already existing oligomer (Figure 4). No foreign surface is involved in this type of nucleation as in the

case of heterogeneous primary nucleation. This nucleation mechanism appears to be highly dependent on the structural

compatibility of the amyloid precursor protein .

Secondary nucleation has been inferred for several proteins, including amyloid-β peptides , tau protein , α-

synuclein , islet amyloid polypeptide (IAPP) , insulin , and bovine carbonic anhydrase .

Amyloid fibril formation may also be seeded by the presence of pre-formed aggregates. In this case, the primary

nucleation event is negligible, leading directly to the growth phase, the absence of secondary mechanisms, and the

polymerization process is expected to follow a single exponential function . This is a consequence of the slower rate of

primary nucleation when compared with the rate of addition of monomers onto an existing fibril (growth). This seeding

process has been proposed to be an important factor in the propagation of the pathogenesis in most, if not all,

amyloidoses .

5.2. Aggregation Via a Nucleation-Independent Mechanism

The nucleation-independent mechanism of protein aggregation (Figure 4 and Scheme 2) is an isodesmic or linear

polymerization mechanism and may be exemplified by the simplest possible model for the formation of spherical

oligomers or linear multimers [ ]. This model is characterized by an infinite number of steps with identical rate constants

(k) independent of the size of the aggregate (Scheme 2), resulting in an exponential polymerization curve with the

absence of a lag phase. Once aggregation starts, the process undergoes downhill-polymerization. In this case,

aggregation proceeds through a sequence of multiple energetically favorable steps, where the successive addition of

amyloidogenic monomers to the growing aggregate is energetically favorable without the need of a multimeric nucleus.
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Scheme 2. The sequential monomer (M) addition mechanism for protein aggregation with identical equilibrium constants

(k) via a nucleation-independent pathway .

Generally, seeding does not increase the aggregation rate in a downhill-polymerization process. However, this model

disregards other aggregation processes that can change the number, size and shape of oligomeric species. For these

reasons, this model sometimes predicts incorrect length distributions of amyloid fibrils at equilibrium. Nevertheless, this

kinetic model has been used to investigate the effect of mutations on the rate of amyloid fibril formation .

This aggregation mechanism was observed in transthyretin , among variants of the amyloid-β peptide ,

and also in the four-repeat domain of tau (Tau4RD) , β2-microglobulin , human and bovine serum albumins 

, HypF-N , FF domain , human muscle acylphosphatase , apolipoprotein C-II , and several SH3

domains .

5.3. The Energy Landscape View of Protein Aggregation

The protein folding energy landscape available to each polypeptide chain includes a wide range of different

conformational states and a multitude of pathways en route to the folded state. The energy landscape in the case of short

polypeptide sequences tends to be a smooth funnel-shaped surface where the polypeptide chain folds quickly towards a

single folded state . On the other hand, larger proteins have rougher energy landscapes, with local minima and a

population of intermediate states that eventually interconvert to the low energy folded state (Figure 5) .

Figure 5. Schematic representation of funnel-shaped energy landscapes for protein folding (non-amyloidogenic pathway,

green) and aggregation (amyloidogenic pathway, red). The surface exhibits the roughness of the protein energy

landscape showing the possible conformational states adopted by the polypeptide chain. Unfolded, partially unfolded and

folded species may be implicated in the aggregation landscape, as long as they are prone to establish intermolecular

interactions and aggregate, thereby resulting in the formation of amorphous aggregates, amyloid fibrils, and native-like

aggregates, respectively. Adapted from references .
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At the top of the funnel, as depicted in Figure 5, the unfolded state of the polypeptide chain has high Gibbs free energy

and high conformational entropy. Upon polypeptide chain folding, the number of conformational states and thus the

conformational entropy decreases. Concurrently, the hydrophobic collapse and the increase in the number of

intramolecular contacts leads to a decrease in free energy toward the native state occupying the global free energy

minimum, yielding the necessary conformational stability of the folded state. However, changes in amino acid sequence,

and/or chemical or biological environment, including changes in pH, temperature, ionic strength, pressure, agitation, shear

forces, interaction with surfaces and many other factors, may tip the energetic balance towards a different free energy

minimum. This is highlighted in Figure 5, where in parallel with the common folding funnel for a protein it is also depicted

an aggregation funnel . Regarding the protein aggregation process, the funnel-shaped free energy surface is

potentially rougher and more complex, since the energy landscape encodes not only the relative stability of unfolded

states, partially unfolded states, and folded states, but also the relative stability of amorphous aggregates, β-sheet-rich

amyloid fibrils, and native-like aggregates (Figure 1 and Figure 5).

Protein aggregation involves several processes that are interconnected, such as folding, unfolding and partial

folding/unfolding, conformational changes, formation of intermolecular interactions, and fibril nucleation, elongation and

stationary phases (Figure 1 and Figure 4) . There is well documented evidence that protein

aggregation states may be formed not only by amyloidogenic intermediates but also by denatured and native states, with

polypeptide chains establishing critical contacts with neighboring molecules through intermolecular interactions.

Aggregated states are in general thermodynamically and kinetically favorable and it is a fine balance of forces that tip the

processes towards a native soluble state or any type of aggregated state. It seems that most polypeptide chains under the

right “stress” conditions tend to form extended β-sheet structures and thus amyloid aggregates . The energy

landscape of protein systems forming large aggregates is described by numerous peaks corresponding to different

conformational states, which is the case of amyloids due to the heterogeneity of fibrillar morphology. Even under the same

experimental conditions, a large number of polymorphic fibrils with distinct morphologies might be formed at the same

time, emphasizing the complexity and multiplicity of the aggregation pathways . The energy minimum of mature

fibrils is deeper and sharper than the native state of a given protein (Figure 5), as suggested by the high stability of the

fibrillar state .

Under specified conditions, a given polypeptide chain has its own folding and aggregation surface funnel. Each point on

this surface expresses a specific and unique conformation of the protein. The profile of the energy landscape is affected

by enthalpic contributions due to interactions between amino acids residues, and enthalpic and entropic contributions due

to the interaction with the aqueous environment, as well as entropic contributions due to changes in conformational

freedom of the polypeptide chain. The driving forces towards the low free energy state for both protein folding and

aggregation are mainly hydrophobic in nature, with additional contributions from electrostatic and polar interactions, as

well as hydrogen bonds . In the case of amyloid fibrils, the cross-β motif conformation is stabilized

essentially by polar interactions due to intermolecular hydrogen bonds, and intermediate aggregated species are formed

by intermolecular hydrophobic and electrostatic interactions .

In the late 1990s  amyloid-like aggregates or fibrils were found to be formed in vitro under specific experimental

conditions by proteins entirely unrelated to well-established amyloid diseases . As we previously mentioned, under the

right conditions, many if not most polypeptide chains may form amyloid. The term “amylome” was thus coined to describe

all the proteins that can form amyloid-like fibrils . There are authors that consider that the fibrillar amyloid state

represents a standard state that every polypeptide chain can adopt under appropriate conditions, and that this state is the

thermodynamic ground state. In this sense, the amyloid fibrillar conformation would be the universal global free-energy

minimum of any polypeptide chain .

6. Conclusions

With the progresses being made in medical research and drug discovery, there is an optimistic view that protein

misfolding diseases will become successfully diagnosed, prevented and treated. At the moment, the research into the

“amyloid problem” is reaching a turning point, since the structures and properties of different amyloidogenic species

involved in the amyloid cascade are finally being identified and, in some cases, structurally characterized. The

improvement in resolution of molecular structures, with the contribution from X-ray, ssNMR and cryo-electron microscopy,

has allowed a better understanding of how amyloid polymorphism may relate with different manifestations of amyloid

diseases, and how different amyloid structures influence cellular function and may be influenced by tissue environment.

This seems to be the perfect time to finally correlate protein aggregation mechanisms, structure of amyloid species, and

how they impact the onset, severity and progression of different misfolding diseases. In turn, this is also the opportunity to
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set up therapeutic solutions based on rational approaches, and thus provide new hope to those many affected by amyloid

diseases.
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