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Microvascular invasion (MVI) is regarded as a sign of early metastasis in liver cancer and can be only diagnosed

by a histopathology exam in the resected specimen. Preoperative prediction of MVI status may exert an effect on

patient treatment management, for instance, to expand the resection margin.
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1. Introduction

Microvascular invasion (MVI) has been recognized as an independent predictor for early recurrence and poor

prognosis after liver resection or transplantation in hepatocellular carcinoma (HCC) . Its reported incidence

ranges from 15% to 57% according to different diagnostic criteria and study population . The diagnosis of MVI,

however, is only made by a postoperative histopathology exam on the resected specimen, which exerts little or no

influence on the patient treatment management, while with the knowledge of MVI, clinicians can optimize a patient

treatment strategy, for example, to expand the resection margin in operation or to adopt an alternative treatment

option. To implement personalized medicine, it is of utmost importance to preoperatively identify and stratify

patients with MVI. Therefore, a reliable, noninvasive biomarker for preoperative prediction of MVI is urgently

needed.

Medical imaging has evolved from a primarily diagnostic tool to an essential role in clinical decision making.

Clinically, radiologists use pattern recognition after establishing links between radiological features at CT or MRI

images and MVI , such as arterial peritumoral enhancement, non-smooth tumor margins, and rim arterial

enhancement . The Liver Imaging Reporting and Data System (LI-RADS) has recently been developed and has

evolved as a comprehensive and standardized diagnostic algorithm for HCC imaging reporting . LI-RADS has

been proven to be an effective tool not only for HCC diagnosis but also for outcome prediction after liver resection,

radiofrequency ablation, or liver transplantation , exerting an increasing influence on the treatment

management of HCC. Previous studies have demonstrated the diagnostic value of LI-RADS in the prediction of

MVI . However, these qualitative features suffer from their subjectivity and high inter-observer variability .

Radiomics is an emerging field that can extract high-throughput imaging features from biomedical images and

convert them into mineable data for quantitative analysis . Its basic assumption lies on that the alterations
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and heterogeneity of the tumor on the micro scale (e.g., cell or molecular levels) can be reflected in the images .

Therefore, through radiomics analysis, the cancerous cell emboli (i.e., MVI) in the hepatic vasculature can be

detected in the preoperative images, which holds promise for the preoperative prediction of MVI and personalized

treatment. In recent years, a number of radiomics models for MVI prediction have emerged. However, there has

not been any research systematically summarizing current radiomics research for MVI prediction, and the overall

efficacy of the prediction model is still unknown. In addition, as radiomics research is a sophisticated process and

consists of several steps, it is important to evaluate the methodological variability to obtain a reliable and

reproducible model before translating it to clinical applications. 

2. General Characteristics and the Incidence of MVI

Studies were retrospectively designed and, in total, included 5552 patients with a sample size varying from 69 to

637 patients (median: 174). Most studies (20/22) split the cohort into a training and a test cohort, while only two of

them further validated their model using an independent external cohort . Nine studies (8/22) focused on

solitary HCC, among which five focused on HCC with a diameter of less than 5 cm.

The incidence of MVI ranged from 25.3% to 67.5% for an individual entire cohort, and 25.3% to 56.4% for HCC

less than 5 cm. Around two thirds (16/22) of the studies explicitly stated their definition of MVI. Table 1 gives more

details about the general characteristics of the reviewed studies.

Table 1. Study and patient characteristics.
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First
Author Year Study

Design

No. of
Patients
(Train vs.

Test
Cohort)

Independent
Validation

Cohort

Age
(Mean/Median)

Gender
(M/F, %) Indication MVI

Incidence

Jian
Zheng 2017 R# 120 (NA) No 70 73/27 HCC 44%

Jie Peng
2018 R

304
(184:120)

No 53 vs. 55 85/15
HCC

(solitary)
66%

Xiaohong
Ma 

2018 R
157

(110:47)
No 53 vs. 55 85/15

HCC (≤6
cm,

solitary)
35%

ShiTing
Feng 2019 R

160
(110:50)

No 54.8 91/9 HCC 38.8%

Ming Ni
2019 R

206
(148:58)

No 57 vs. 59 NA
HCC (>1

cm)
42.7%

Rui 2019 R 267
(194:73)

No 57.9 86/14 HCC
(solitary)

33.7%
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Zhang 

Yong-Jian
Zhu 2019 R

142
(99:43)

No 57 87/13
HCC (<5

cm,
solitary)

37.3%

Giacomo
Nebbia 2020 R 99 (NA) No

51 vs. 54
(MVI vs. non-

MVI)
84/16 HCC 61.6%

Qiu-ping
Liu 

2020 R
494

(346:148)
No NA 84/16 HCC 30.2%

Xiuming
Zhang 

2020 R
637

(451:111)
Yes

(75, external)
57.5 vs. 56.2

vs. 60.7 
86/14 HCC 40%

Yi-quan
Jiang 

2020 R
405

(324:81)
No 48.5 85/15 HCC 54.3%

Mu He 2020 R
163

(101:44)
Yes

(18, internal)
50.0 vs. 47.5

vs. 52.0 
82/18 HCC 67.5%

Huan-
Huan

Chong 
2021 R

356
(250:106)

No 54.2 85/15
HCC (≤5

cm)
25.3%

Yidi Chen
2021 R

269
(188:81)

No 51.5 81/19 HCC 41.3%

Youcai Li
2021 R 80 (50:30) No NA 91/9

HCC
(BCLC

0/A)
45%

Danjun
Song 

2021 R
601

(461:140)
No 56.5 82/18

HCC
(solitary)

37.40%

Houjiao
Dai 

2021 R
69

(LOOCV)
No 52.7 96/4

HCC
(solitary)

42.0%

Peng Liu
2021 R

185
(124:61)

No 54 vs. 52 84/26
HCC (≤5

cm,
solitary)

34.1%

Shuai
Zhang 

2021 R
130

(91:39)
No 57.8 vs. 58.6 68/32

HCC (>1
cm)

61.5%
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Note: #, respective study; , train vs. test cohort; , train vs. test vs. validation cohort; BCLC, the Barcelona Clinic

Liver Cancer staging system; HCC, hepatocellular carcinoma; LOOCV, leave-one-out cross validation; MVI,

microvascular invasion; NA, not applicable.

3. MVI Prediction

Five items of the RQS in which all included studies performed poorly are “prospective study”, “phantom study”,

“biological correlates”, “cost-effectiveness analysis”, and “openness of data and code”. Studies are given the

highest weighting in the RQS tool (7 points, accounting for around 20% of the full scale). Phantom study process

ensures that only robust features are included in the following radiomics analysis. Biological correlates aim to link

imaging findings with gene or molecular signatures. Previous studies have detected a 91-gene signature that highly

correlates with vascular invasion in HCC . Based on this finding, a contrast-enhanced CT imaging biomarker,

i.e., radiogenomic venous invasion (RVI), which includes three imaging features (internal arteries, a hypo-dense

halo, and a tumor-liver difference), has been shown to be an accurate predictor of MVI . Future studies are

required to explore and verify the correlations between radiomics features and gene expressions. A cost-

effectiveness analysis can evaluate a radiomics prediction model in terms of health economics when applied in

clinical routines. It assumes that a novel predictor should not be more expensive than currently available predictors

when accuracy is comparable. It also compares the health effect of a radiomics predictor with a condition without a

radiomics predictor, such as a quality-adjusted life year analysis. researchers think that evaluating this point seems

less urgent, given that the methodological standardization and clinical/biological validation of current radiomics

models are still lacking. Data and code openness aims to repeat and reproduce results and findings and to further

validate and promote the prediction model in other centers. Though some initiatives have been proposed in an

attempt to remove the obstacles in data sharing, other factors, such as legal/privacy issues, culture/language

barriers, and insufficient staff/time, still exist . None of the studies shared their codes or imaging data publicly.

Regarding the items of “imaging at multiple time points” and “multiple segmentations”, both aim to select stable

imaging features for modelling considering subjective and temporal variations. However, less than half of the

studies performed ICC analysis and seldom explicitly stated that imaging features from different phases/sequences
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Wanli
Zhang 

2021 R
111

(88:23)
No NA 88/12 HCC 51.4%
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Meng 

2021 R
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No 57 vs. 57 85/15

HCC
(solitary)
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Zhang 
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were evaluated during that analysis (i.e., test–retest analysis). Furthermore, there is no generally accepted ICC

threshold at which radiomics features can be considered robust. Generally, when reporting ICC, values of 0.75–

0.90 are regarded as indicating good reliability, and values higher than 0.9 are regarded as excellent . However,

among the studies that calculated ICC, the applied threshold varied among 0.75, 0.80, and 0.9. A future study

should be applied to determine the proper threshold at which robust radiomics features for modelling can be

defined. Some of the studies did not rule out features with low ICC and constructed their model using only the full

features extracted from their images.

When evaluating the performance and clinical utility of the radiomics model considering the items of “cut-off

analysis”, “calibration statistics”, “comparison with gold-standard”, “potential clinical utility”, and “validation”, the

included studies again were insufficient. The performance metrics of a model, such as the sensitivity and

specificity, are often determined by a specified cut-off value, and this value can further classify a patient cohort into

high and low risk groups for a certain condition. A cut-off value is also one of the prerequisites for reproducing the

results of previous research. However, only five studies reported their cut-off values. Regarding calibration

analysis, which evaluates the agreement between predictions and the actual events, less than half of the studies

performed one. Regarding the comparison with “gold-standard”, there is currently no surrogate that can serve as a

“gold-standard” for MVI prediction. As the value of semantic imaging features have been extensively explored for

MVI prediction, we therefore defined conventional imaging features as the “gold-standard”. Among the 10 studies

that compared prediction performance between radiomics and radiologist models, all declared that the radiomics

models outperformed the radiologists’ semantic models. However, the publishing bias should be borne in mind

when interpreting these results. Only two studies validated their models using independent external cohorts.

However, one of them validated their model in only 18 patients, which is not a sufficiently large validation cohort

according to the “10-EPV” principle (at least 10 events per variable) . When developing a prediction model,

the ratio of event and variable should be maintained at a certain level to avoid potential overfitting or underfitting.

Among the 16 studies with an EPV ratio available, the median EPV (MVI positive cases/features) ratio was 4.2,

indicating a potential risk of overfitting. Therefore, it is assumed that, before translating these models into a clinical

routine utility, some practical issues should be well addressed, such as the reproducibility of the radiomics model,

the standardization of imaging protocols, model overfitting, and the external validation of the prediction models.

Though the RQS tool aims for high-quality radiomics research, there are concerns that should be optimized in

future revisions. The RQS is mainly focused on radiomics itself and ignores non-radiomics components during

radiomics model/predictor development, such as blindness to outcomes and measurement, intervals between the

index test and reference standard (in the case of MVI, the time between imaging and liver resection), and the

influence of sample size and enrollment of study subjects. All these factors may also introduce bias. Under this

context, the tool of QUADAS-2 can serve as a vital supplement to RQS when evaluating the quality of radiomics

research. Most of the studies reported in this systematic search showed a low or unclear risk in the four domains of

risk of bias evaluation. The missing or unclear parts observed using the RQS and QUADAS-2 tools were obvious,

which implies that these tools might not be so well known or adopted. Future researchers will ideally apply the RQS

or QUADAS-2 as a checklist to improve the quality of their reports. In fact, a specified checklist, i.e., CLAIM

(Checklist for Artificial Intelligence in Medical Imaging) for artificial intelligence research , and a general guideline
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