

Creatine for Exercise/Sports Performance

Subjects: **Nutrition & Dietetics**

Contributor: Benjamin Wax

Creatine is one of the most studied and popular ergogenic aids for athletes and recreational weightlifters seeking to improve sport and exercise performance, augment exercise training adaptations, and mitigate recovery time.

Studies consistently reveal that creatine supplementation exerts positive ergogenic effects on single and multiple bouts of short-duration, high-intensity exercise activities, in addition to potentiating exercise training adaptations.

supplementation

ergogenic aid

athletic performance

weightlifting

resistance exercise

training

muscular power

recovery

muscular adaptation

muscle damage

1. Introduction

In the area of sports performance and exercise, both athletes and recreational non-athletes are continuously seeking competitive advantages to improve their health and optimize physical performance. Although various activities and considerations interact to achieve this end, many people turn to various exercise and nutritional strategies to augment performance (i.e., enhanced muscular strength, power, and force) [1][2]. One of the most commonly used and scientifically supported ergogenic aids is creatine monohydrate (commonly referred to as creatine) [1][3][4][5]. Creatine is an amino acid found in relatively high concentrations in skeletal muscle. Since 1992, when the first reports emerged that exogenous creatine monohydrate supplementation increases intramuscular phosphocreatine (PCr) stores [6], and shortly afterwards, when these increases were inextricably linked to augmented exercise performance [7][8], the ability of creatine to function as an ergogenic aid has attracted great interest. Still today, creatine is one of the most popular nutritional ergogenic aids for athletes and recreational performers [1][3][4]. In addition to its popularity in the consumer realm, creatine's ability to enhance or augment some types of exercise performance has arguably been one of the most researched topics in the sport nutrition literature for the past 25 years [1][3][7][9][10][11]. In this regard, creatine has yielded predominantly positive effects regarding exercise performance measures with no ergolytic effects and minimal to no side effects in populations ranging from adolescents to the elderly [3][9]. The reported ergogenic benefits of creatine monohydrate include enhanced force output, augmented power output, increased strength, increased anaerobic threshold, increased work capacity, enhanced recovery, and enhanced training adaptations [1][3][4][9][12][13].

Although a complete discussion is beyond the scope of this review, several supplementation strategies have been explored to increase intramuscular creatine stores. A loading phase was initially proposed by Harris et al. in 1992 [6] and has subsequently been used in a large number of scientific investigations. This approach requires consuming four separate doses of 5 g/day for five consecutive days and consistently leads to a 20%–40% increase in creatine

content [3]. Later, Hultman et al. [14] determined that smaller 'maintenance' doses (2–5 g per dose, 1 ×/day, or 0.03 g/kg/dose) could be used to maintain elevated creatine stores in the muscle. It is now commonly accepted that a loading phase may not be needed, but this approach remains the most rapid means to increase intramuscular PCr levels and, thereby, performance [14][15]. Notably, Law and colleagues [16] compared the efficacy of creatine loading on performance measures using a 2- and 5-day regimen (4 × 5 g/day) in 20 physically active men. They reported significant improvements in maximal leg strength and average anaerobic power following a 5-day creatine loading regimen compared to the placebo group; however, no significance in performance was found following 2 days of loading. Additionally, Sale et al. [17] found that the total ingestion of 20 g of creatine at 1 g per 30 min intervals for 5 days yielded lower urinary excretion of creatine than the typical loading regimen of 4 × 5 g/day over a 5-day period, leading the authors to conclude that this likely resulted in higher intramuscular levels. In this respect, it is without question that increasing intramuscular creatine stores through any number of supplemental approaches can increase intramuscular PCr levels and that these increases are directly linked to various ergogenic outcomes [3][9]. In this respect, [Table 1](#) (adapted from: [3]) outlines the potential ergogenic benefits of creatine supplementation, whereas [Table 2](#) provides examples of sports or sporting events that may be enhanced by creatine supplementation (also adapted from [3]). In addition to these tables, results from previous selected original investigations and review papers surrounding the ergogenic potential of creatine supplementation are summarized throughout this paper in tables. Finally, the interested reader is directed to other reviews that have outlined the impact of creatine supplementation on exercise performance [3][9][10][12][13][18].

Table 1. Potential ergogenic benefits of creatine supplementation.

- Increased single and repetitive sprint performance
- Increased work performed during sets of maximal effort muscle contractions
- Increased muscle mass and strength adaptations during training
- Enhanced glycogen synthesis
- Increased anaerobic threshold
- Possible enhancement of aerobic capacity via greater shuttling of ATP from mitochondria
- Increased work capacity

- Enhanced recovery
- Greater training tolerance

Adopted from Kreider et al. 2017 [2].

Table 2. Examples of sports and activities in which performance may be enhanced by creatine supplementation.

Increased PCr

- Track sprints: 60–200 m
- Swim sprints: 50 m
- Pursuit cycling

Increased PCr Resynthesis

- Basketball
- Field hockey
- American Football
- Ice hockey
- Lacrosse
- Volleyball

Reduced Muscle Acidosis

- Downhill skiing
- Water Sports (e.g., Rowing, Canoeing, Kayaking, Stand-Up Paddling)
- Swim events: 100, 200 m
- Track events: 400, 800 m
- Combat Sports (e.g., MMA, Wrestling, Boxing, etc.)

Oxidative Metabolism

- Basketball
- Soccer
- Team handball
- Tennis
- Volleyball
- Interval Training in Endurance Athletes

Increased Body Mass/Muscle Mass

- American Football
- Bodybuilding

- Combat Sports (e.g., MMA, Wrestling, Boxing, etc.)
- Powerlifting
- Rugby
- Track/Field events (Shot put; Javelin; Discus; Hammer Throw)
- Olympic Weightlifting

Collins,
e:

Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38.

2. Williams MH. Facts and fallacies of purported ergogenic amino acid supplements. *Clin. Sports Med.* 1999, 18, 633–649.

2. Exercise and Sports Performance

Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Creatine's ability to increase various parameters of acute exercise performance is well-documented [3][9][10]. A Safety and efficacy of creatine supplementation in exercise, sport, and medicine. *J. Int. Soc. Sports Nutr.* 2017, **14**, 1–18. review by Kreider in 2003 summarized the literature and concluded that approximately 70% of these studies had

reported an improvement in some aspect of exercise performance [9]. The magnitude of the increase in performance is dependent on a large number of variables, which can include the dosing regimen, training status of the athlete, and any one of a number of acute exercise variables (intensity of exercise, duration of effort, etc.). An overview of this literature reveals that performance increases of 10%–15% are typically observed [9,12]. More

specifically, 5%–15% improvements in maximal power and strength, anaerobic capacity, and work performance

Surfacing optimisation. The efficacy of alternative forms of surfacing is still to be determined, but previous studies have shown that the use of alternative materials can improve performance and reduce fatigue. For example, a 5% improvement in performance has been reported by using a polymer-modified asphalt system, while other reports indicate that strength reduction (e.g. 20%) may have an ergolytic or performance-decreasing response. In this respect, a

large number of studies have commonly reported an increase in body mass of 1–2 kg during the first week of loading [3], which may or may not have ergolytic implications, depending on the type of athlete and the phase of

training. Finally, research involving various types of endurance activity in conjunction with creatine supplementation

Balsom, P.D.; Ekblom, B.; Söerlund, K.; Sjödin, B.; Hultman, E. Creatine supplementation and exercise performance. *Scand. J. Clin. Lab. Invest.* 1994, 54, 331-336.

dynamic high-inter-

3. Recovery

B. Green, C. M. Casey, A.; Short, A.H.; Harris, R.; Soderlund, K.; Hultman, E. Influence of Oral Creatine Supplementation of Muscle Torque during Repeated Bouts of Maximal Voluntary Increases in intramuscular levels of creatine phosphate secondary to creatine supplementation increase the supply

of a robust, energetic substrate that can be used to resynthesize ATP. In this capacity, creatine supplementation can help increase and maintain the delivery of ATP to working muscles, allowing for an increased ability to perform

work, resulting in the widespread display of ergogenic outcomes commonly reported in the literature [3][9][19][20][21].

Aside from overt improvements in the performance of single bouts of maximal efforts, creatine is able to augment

10. Rawson, E.S.; Volek, J.S. Effects of Creatine Supplementation and Resistance Training on recovery. The Muscle Strength and Weightlifting Performance typ. *Strength Cond. Res.* 2003, **17**, 822–831.

11. Stone, M.H.; Sanborn, K.; Smith, L.L.; O'Bryant, H.S.; Hoke, T.; Utter, A.C.; Johnson, R.L.; Boros, R.; Hruby, J.; Pierce, K.C.; et al. Effects of In-Season (5 Weeks) Creatine and Pyruvate Supplementation on Anaerobic Performance and Body Composition in American Football Players. *Int. J. Sport Nutr.* 1999, **9**, 146–165.

12. Buford, T.W.; Kreider, R.B.; Stout, J.R.; Greenwood, M.; Campbell, B.; Spano, M.; Ziegenfuss, T.; Lopez, H.; Landis, J.; Antonio, J. International Society of Sports Nutrition position stand: Creatine supplementation and exercise. *J. Int. Soc. Sports Nutr.* 2007, **4**, 6.

4. Other Considerations

13. Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine supplementation with specific view to exercise/sports performance: An update. *J. Int. Soc. Sports Nutr.* 2012, **9**, 39.

Due to the popularity associated with creatine supplementation since the first published reports in the early 1990s, a number of other questions have been evaluated and considered regarding its efficacy. For example, the majority of the published literature on creatine has been completed using male athletes, leading to much less information being available on how creatine supplementation impacts females. Previous work has highlighted gender-specific differences in the response to creatine supplementation [4].

14. Hultman, E.; Soderlund, K.; Timmons, J.A.; Cederblad, G.; Greenhaff, P.L. Muscle creatine loading in men. *J. Appl. Physiol.* 1996, **81**, 232–237.

15. Greenhaff, P.; Bodkin, K.; Soderlund, K.; Hultman, E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. *J. Appl. Physiol.* 1994, **76**, 5725–5730.

16. Law, Y.L.L.; Ong, W.S.; Gillian Yap, T.L.; Lim, S.C.J.; Von Chia, E. Effects of Two and Five Days of Creatine Loading on Muscular Strength and Anaerobic Power in Trained Athletes. *J. Strength Cond. Res.* 2009, **23**, 906–914.

17. Sale, C.; Harris, R.C.; Florence, J.; Kumps, A.; Sanyura, R.; Poortmans, J.R. Urinary creatine and methylamine excretion following 4 × 5 g day⁻¹ or 20 × 1 g day⁻¹ of creatine monohydrate for 5 days. *J. Sports Sci.* 2009, **27**, 759–766.

18. Lanners, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.-X.; Dutheil, F. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analysis. *Sports Med.* 2015, **45**, 1285–1294.

Overwhelmingly, the majority of research that has examined the potential of creatine to impact exercise performance has been conducted using the monohydrate version. Although several other forms of creatine have been proposed and marketed as alternatives, none have been shown to offer benefits above and beyond those seen with monohydrate. In this respect, a number of studies have been completed comparing various alternative forms of creatine, and the interested reader is directed to the following papers: [3][4][5][35][36][37][38][39][40]. In this respect, one must also realize that several studies have sought to examine the impact of combining creatine with other ingredients, such as beta-alanine [41][42], beta-hydroxy-beta-methylbutyrate (HMB) [43][44][45][46][47][48][49], glutamine [50], sodium bicarbonate [51], carbohydrates [20][52][53][54][55], and protein [20][56][53] to examine the potential for any synergistic outcomes. Furthermore, the interested reader is encouraged to read the critical review on this topic by Jäger et al. [36].

22. Vandenberghe, K.; Goris, M.; Van Hecke, P.; Van Leemputte, M.; Vangerven, L.; Hespel, P. Long-Term Creatine Intake is Beneficial to Muscle Performance during Resistance Training. *J. Appl. Physiol.* 1997, **83**, 2055–2063.

The level of creatine uptake is a key consideration, as it relates to the potential for health and performance outcomes. In this respect, one of the key considerations that has been identified in the literature is the presence of 'responders' and 'nonresponders'. This concept was discussed in a 1999 review by Demant and Rhodes, in which

23. Hamilton, K.; Kilduff, L.P.; Myers, M.; Gravelle, M.; MacLennan, D.P. Oral creatine supplementation and isokinetic leg extensor and flexor responses in females. *Int. J. Sport Nutr. Exerc. Metab.* 2000, **10**, 277–289. other people following a similar supplementation regimen [57]. To illustrate this point, Kilduff et al. [58] identified subjects in their study as responders and nonresponders based on the magnitude of change seen in intramuscular PCr. When examined together, peak force was not changed due to supplementation, but when evaluated separately, the responders significantly increased their peak force production after creatine supplementation. Later, Syrotuik et al. [59] completed an analysis aiming to build a physiological profile of responders and nonresponders. In terms of quadriceps contraction in women, *Int. J. Sport Nutr. Exerc. Metab.* 2003, **13**, 87–96.

24. Tarnopolsky, M.A.; MacLennan, D.P. Creatine Monohydrate Supplementation Enhances High-Intensity Exercise Performance in Males and Females. *Int. J. Sport Nutr. Exerc. Metab.* 2000, **10**, 452–463.

25. Kambis, K.W.; Rizzedaz, S.K. Short-term creatine supplementation improves maximum quadriceps contraction in women. *Int. J. Sport Nutr. Exerc. Metab.* 2003, **13**, 87–96.

26. Candow, D.; Forbes, S.; Kirk, B.; Duque, G. Current Evidence and Possible Future Applications of Creatine Supplementation for Older Adults. *Nutrients* 2021, **13**, 745.

27. Forbes, S.C.; Candow, D.G.; Ferreira, L.H.B.; Souza-Junior, T.P. Effects of Creatine Supplementation on Properties of Muscle, Bone, and Brain Function in Older Adults: A Narrative Review. *J. Diet. Suppl.* 2021, **10**, 1–18.

28. Candow, D. Creatine supplementation in older adults: The effects of creatine on muscle strength and power after 12 months of supplementation. *Front. Nutr.* 2018, **5**, 27. Furthermore, additional studies by Watt [62] and Meeks [64] highlighted the fact that creatine supplementation in vegetarians [62] and non-vegetarians [64] increased intramuscular and plasma levels of creatine in a similar fashion. Furthering this aim, reviews by Venderley and Kaviani concluded that creatine supplementation could be an effective strategy for vegetarian individuals to increase their intramuscular levels of PCr, a key factor that may impact an individual's ability to perform high-intensity exercise [60,61]. Finally, interested readers are encouraged to review the following articles by Antonio [4], as well as the International Society of Sports Nutrition's position on creatine [3].

29. Forbes, S.C.; Chilibeck, P.D.; Candow, D.G. Creatine Supplementation during Resistance Training Does not Lead to Greater Bone Mineral Density in Older Humans: A Brief Meta-Analysis. *Front. Nutr.* 2018, **5**, 27.

30. Chilibeck, P.D.; Kaviani, B.; Candow, D.G.; Zello, G.A. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. *Open Access J. Sports Med.* 2017, **8**, 213–226.

31. Candow, D.G.; Vogt, E.; Johannsmeyer, S.; Forbes, S.C.; Farthing, J.P. Strategic creatine supplementation and resistance training in healthy older adults. *Appl. Physiol. Nutr. Metab.* 2015, **40**, 689–694.

32. Candow, D.G.; Zello, G.A.; Ling, B.; Farthing, J.P.; Chilibeck, P.D.; McLeod, K.; Harris, J.; Johnson, S. Comparison of Creatine Supplementation before Versus after Supervised Resistance Training in Healthy Older Adults. *Res. Sports Med.* 2014, **22**, 61–74.

33. Candow, D.G.; Little, J.P.; Chilibeck, P.D.; Abeysekara, S.; Zello, G.A.; Kazachkov, M.; Cornish, S.M.; Yu, P.H. Low-Dose Creatine Combined with Protein during Resistance Training in Older Men. *Med. Sci. Sports Exerc.* 2008, **40**, 1645–1652.

34. Candow, D.G.; Chilibeck, P.D.; Chad, K.E.; Chrusch, M.J.; Davison, K.S.; Burke, D.G. Effect of Ceasing Creatine Supplementation while Maintaining Resistance Training in Older Men. *J. Aging Phys. Act.* 2004, **12**, 219–231.

35. Peeters, B.M.; Lantz, C.D.; Mayhew, J.L. Effect of oral creatine monohydrate and creatine phosphate supplementation on maximal strength indices, body composition and blood pressure. *J. Strength Cond. Res.* 1999, 13, 3–9.

36. Jäger, R.; Purpura, M.; Shao, A.; Inoue, T.; Kreider, R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. *Amino Acids* 2011, 40, 1369–1383.

37. Kerksick, C.; Wilborn, C.D.; Campbell, W.I.; Harvey, T.M.; Marcello, B.M.; Roberts, M.D.; Parker, A.G.; Byars, A.G.; Greenwood, L.D.; Almada, A.L.; et al. The Effects of Creatine Monohydrate Supplementation With and Without D-Pinitol on Resistance Training Adaptations. *J. Strength Cond. Res.* 2009, 23, 2673–2682.

38. Spillane, M.; Schoch, R.; Cooke, M.B.; Harvey, T.; Greenwood, M.; Kreider, R.B.; Willoughby, D.S. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. *J. Int. Soc. Sports Nutr.* 2009, 6, 6.

39. Greenwood, M. Differences in creatine retention among three nutritional formulations of oral creatine supplements. *J. Exerc. Physiol. Online* 2003, 6, 37–43.

40. Jagim, A.R.; Oliver, J.M.; Sanchez, A.; Galvan, E.; Fluckey, J.; Riechman, S.; Greenwood, M.; Kelly, K.; Meininger, C.; Rasmussen, C.; et al. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. *J. Int. Soc. Sports Nutr.* 2012, 9, 43.

41. Stout, J.R.; Cramer, J.T.; Mielke, M.; O'Kroy, J.; Torok, D.J.; Zoeller, R.F. Effects of Twenty-Eight Days of Beta-Alanine and Creatine Monohydrate Supplementation on the Physical Working Capacity at Neuromuscular Fatigue Threshold. *J. Strength Cond. Res.* 2006, 20, 928–931.

42. Hoffman, J.; Ratamess, N.; Kang, J.; Mangine, G.; Faigenbaum, A.; Stout, J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. *Int. J. Sport Nutr. Exerc. Metab.* 2006, 16, 430–446.

43. Fernández-Landa, J.; Fernández-Lázaro, D.; Calleja-González, J.; Caballero-García, A.; Martínez, A.C.; León-Guereño, P.; Mielgo-Ayuso, J. Effect of Ten Weeks of Creatine Monohydrate Plus HMB Supplementation on Athletic Performance Tests in Elite Male Endurance Athletes. *Nutrients* 2020, 12, 193.

44. Fernández-Landa, J.; Fernández-Lázaro, D.; Calleja-González, J.; Caballero-García, A.; Córdova, A.; León-Guereño, P.; Mielgo-Ayuso, J. Long-Term Effect of Combination of Creatine Monohydrate plus β -Hydroxy β -Methylbutyrate (HMB) on Exercise-Induced Muscle Damage and Anabolic/Catabolic Hormones in Elite Male Endurance Athletes. *Biomolecules* 2020, 10, 140.

45. Fernández-Landa, J.; Calleja-González, J.; León-Guereño, P.; Caballero-García, A.; Córdova, A.; Mielgo-Ayuso, J. Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation

on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review. *Nutrients* 2019, 11, 2528.

46. Mobley, C.B.; Fox, C.D.; Ferguson, B.S.; Amin, R.H.; Dalbo, V.J.; Baier, S.; Rathmacher, J.A.; Wilson, J.M.; Roberts, M.D. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy. *J. Int. Soc. Sports Nutr.* 2014, 11, 38.

47. O'Connor, D.M.; Crowe, M.J. Effects of Six Weeks of γ -Hydroxy- γ -Methylbutyrate (HMB) and HMB/Creatine Supplementation on Strength, Power, and Anthropometry of Highly Trained Athletes. *J. Strength Cond. Res.* 2007, 21, 419–423.

48. Crowe, M.J.; O'Connor, D.M.; Lukins, J.E. The Effects of β -Hydroxy- β -Methylbutyrate (HMB) and HMB/Creatine Supplementation on Indices of Health in Highly Trained Athletes. *Int. J. Sport Nutr. Exerc. Metab.* 2003, 13, 184–197.

49. Jówko, E.; Ostaszewski, P.; Jank, M.; Sacharuk, J.; Zieniewicz, A.; Wilczak, J.; Nissen, S. Creatine and β -hydroxy- β -methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. *Nutrients* 2001, 17, 558–566.

50. Lehmkuhl, M.; Malone, M.; Justice, B.; Trone, G.; Pistilli, E.; Vinci, D.; Haff, E.E.; Kilgore, J.L.; Haff, G.G. The Effects of 8 Weeks of Creatine Monohydrate and Glutamine Supplementation on Body Composition and Performance Measures. *J. Strength Cond. Res.* 2003, 17, 425.

51. Barber, J.J.; McDermott, A.Y.; McGaughey, K.J.; Olmstead, J.D.; Hagopian, T.A. Effects of Combined Creatine and Sodium Bicarbonate Supplementation on Repeated Sprint Performance in Trained Men. *J. Strength Cond. Res.* 2013, 27, 252–258.

52. Green, A.L.; Hultman, E.; Macdonald, I.A.; Sewell, D.A.; Greenhaff, P.L. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. *Am. J. Physiol. Content* 1996, 271, 821–826.

53. Steenge, G.R.; Simpson, E.J.; Greenhaff, P.L. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. *J. Appl. Physiol.* 2000, 89, 1165–1171.

54. Green, A.L.; Simpson, E.J.; Littlewood, J.J.; Macdonald, I.A.; Greenhaff, P.L. Carbohydrate ingestion augments creatine retention during creatine feeding in humans. *Acta Physiol. Scand.* 1996, 158, 195–202.

55. Roberts, P.A.; Fox, J.; Peirce, N.; Jones, S.; Casey, A.; Greenhaff, P.L. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. *Amino Acids* 2016, 48, 1831–1842.

56. Stout, J.; Eckerson, J.; Noonan, D.; Moore, G.; Cullen, D. Effects of 8 weeks of creatine supplementation on exercise performance and fat-free weight in football players during training.

Nutr. Res. 1999, 19, 217–225.

57. Demant, T.W.; Rhodes, E. Effects of Creatine Supplementation on Exercise Performance. *Sports Med.* 1999, 28, 49–60.

58. Kilduff, L.P.; Vidakovic, P.; Cooney, G.; Twycross-Lewis, R.; Amuna, P.; Parker, M.; Paul, L.; Pitsiladis, Y.P. Effects of creatine on isometric bench-press performance in resistance-trained humans. *Med. Sci. Sports Exerc.* 2002, 34, 1176–1183.

59. Syrotuik, D.G.; Bell, G.J. Acute Creatine Monohydrate Supplementation: A Descriptive Physiological Profile of Responders vs. Nonresponders. *J. Strength Cond. Res.* 2004, 18, 610–617.

60. Kaviani, M.; Shaw, K.; Chilibeck, P.D. Benefits of Creatine Supplementation for Vegetarians Compared to Omnivorous Athletes: A Systematic Review. *Int. J. Environ. Res. Public Health* 2020, 17, 3041.

61. Venderley, A.M.; Campbell, W.W. Vegetarian Diets. *Sports Med.* 2006, 36, 293–305.

62. Shomrat, A.; Weinstein, Y.; Katz, A. Effect of creatine feeding on maximal exercise performance in vegetarians. *Graefe's Arch. Clin. Exp. Ophthalmol.* 2000, 82, 321–325.

63. Watt, K.K.; Garnham, A.P.; Snow, R.J. Skeletal Muscle Total Creatine Content and Creatine Transporter Gene Expression in Vegetarians Prior to and Following Creatine Supplementation. *Int. J. Sport Nutr. Exerc. Metab.* 2004, 14, 517–531.

64. Lukaszuk, J.M.; Robertson, R.J.; Arch, J.E.; Moyna, N.M. Effect of a Defined Lacto-Ovo-Vegetarian Diet and Oral Creatine Monohydrate Supplementation on Plasma Creatine Concentration. *J. Strength Cond. Res.* 2005, 19, 735–740.

Retrieved from <https://encyclopedia.pub/entry/history/show/25800>