

Extrahepatic Manifestations in Hepatitis C Virus Infection

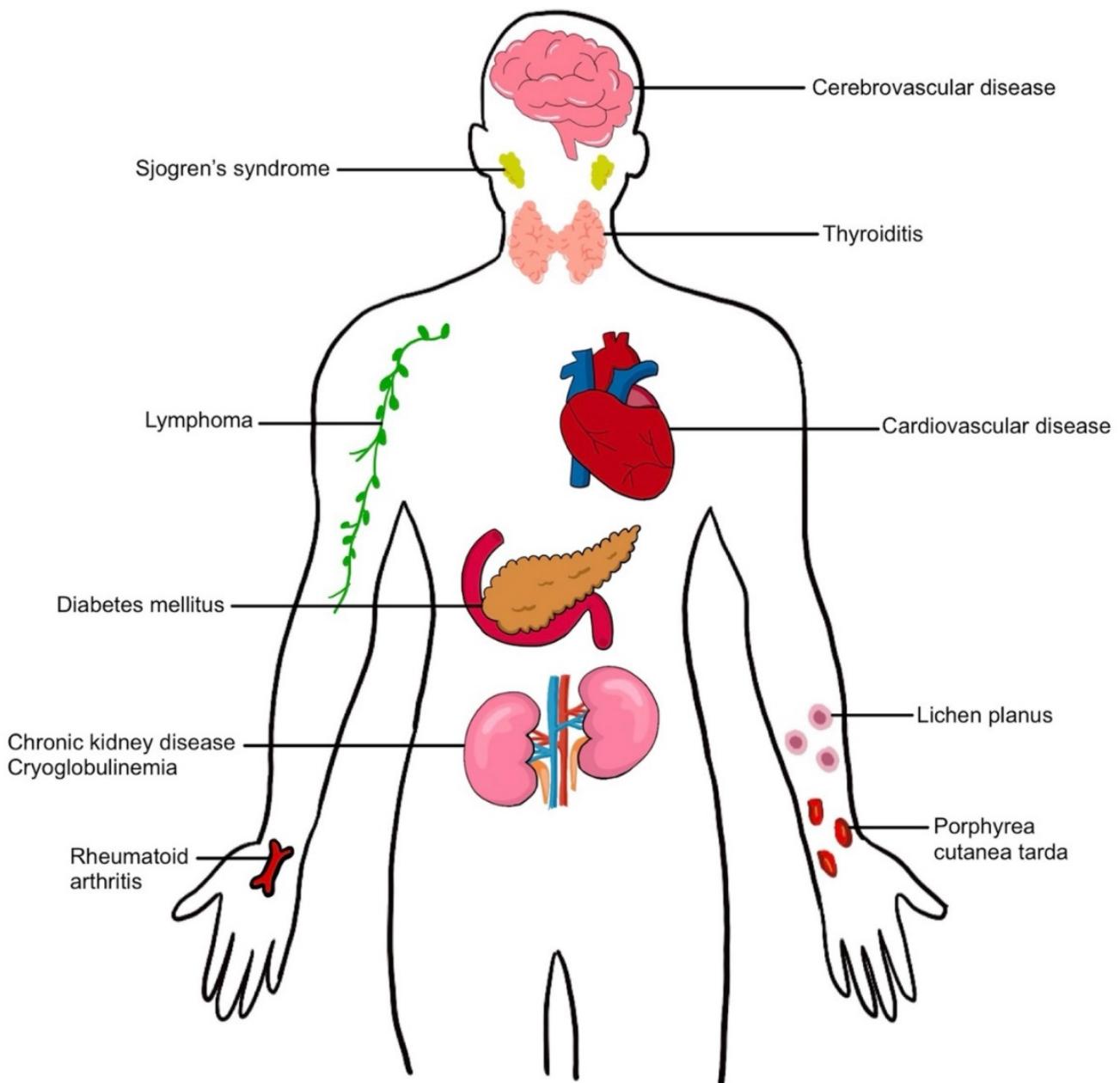
Subjects: **Gastroenterology & Hepatology**

Contributor: Busara Songtanin , Kenneth Nugent

Hepatitis C is a liver infection caused by the hepatitis C virus and is a major health problem that contributes to the global burden of chronic disease. Chronic infection can lead to liver cancer and death from end-organ damage. Despite the introduction of novel anti-viral therapy, the disease burden is still high.

extrahepatic manifestation

hepatitis C virus


hepatitis C infection

1. Introduction

Over 58 million people worldwide are infected with the hepatitis C virus (HCV), an estimated 2.4 million people in the United States live with hepatitis C, and about 400,000 people died from this disease in 2016 [1][2]. Chronic hepatitis C is associated with significant morbidity, and although the number of cases is decreasing, it is still a common reason for liver transplantation in the United States [3].

Approximately 25% of HCV-infected patients spontaneously clear the infection [4], but most patients become chronically infected with HCV and develop liver-related complications, including decompensated cirrhosis and hepatocellular carcinoma (HCC), which significantly contribute to mortality. However, non-liver-related hepatitis C manifestations can also develop in chronically hepatitis C-infected patients, and these extrahepatic manifestations also contribute to the disease burden, poor outcomes, and mortality in HCV-infected patients [5][6][7].

Extrahepatic manifestations of HCV can involve almost every organ system in the human body and include metabolic syndromes (diabetes mellitus, cardiovascular disease, cerebrovascular disease), autoimmune diseases (Sjogren syndrome, thyroiditis, arthritis), immune-mediated disorders (mixed cryoglobulinemia), malignancy (lymphoma), dermatologic conditions (lichen planus, porphyria cutanea tarda), and renal diseases [8][9][10] (Figure 1). These extrahepatic manifestations of HCV can increase mortality in chronic hepatitis C-infected patients and increase the risk of developing hepatic fibrosis and HCC; they also reduce the quality of life in patients and increase health care costs worldwide.

Figure 1. Extrahepatic manifestation in hepatitis C virus infection.

The primary event in hepatitis C infections involves viral replication in hepatocytes. Chang and co-investigators measured HCV replication in the human liver using *in situ* hybridization techniques to measure the HCV genome and replicative intermediate ribonucleic acids (RNAs) [11]. They determined that the number of HCV genomes ranged from 7-64 RNA molecules in individual hepatocytes. The maximum number of RNA genomes for a single cell was 74, and the number in the entire liver ranged from 1.8×10^{11} molecules to 1.8×10^{12} molecules. There was a gradient of dispersion around infected hepatocytes which suggested that infection spread to neighboring hepatocytes as the mechanism of viral spread in the liver. In addition, viral synthetic activities can compromise the normal metabolic activities in hepatocytes and increase the possibility of hepatocellular injury and death. The number of genomes per milliliter (mL) serum in the Chang study ranged from 3.4×10^6 molecules to 5.0×10^8 molecules. Schijman et al. determined the HCV load in 245 male and female patients with HCV infection. The

median HCV load was 344,000 international units/mL [12]. There were no major differences between male and female patients or between different viral genotypes (1a, 1b, 2, 3a, 4). These virions in the serum have the potential to reinfect hepatocytes and infect extrahepatic tissues.

The development of extrahepatic complications associated with hepatitis C infection involves complex interactions which include direct viral effects on tissue, the metabolic effects associated with hepatic infection and injury, and the host defense responses associated with ongoing infection [13]. Other factors which potentially influence the development of extrahepatic manifestations include obesity, alcohol use, and the viral genotype causing the infection. Metabolic consequences will also depend on the duration of the infection, the possibility of co-infection with other viral pathogens, and drug treatment effects. These various possibilities are discussed below in the sections on non-hepatic organ involvement in hepatitis C infections.

With new HCV treatments based on pangenotypic direct-acting antiviral (DAAs) therapy, over 90% of hepatitis C infected patients can have sustained virologic responses (SVR) within 2–3 months, and these regimens can be used in many patients with comorbidities who previously could not be treated [14]. Further, recent studies show that SVR was associated with a significant reduction in the risk of several extrahepatic manifestations of HCV [15]. HCV treatment can reduce medical costs by up to \$25,000 per patient per year [16]. Therefore, the purpose of this research is to analyze the risk factors, disease burden, outcomes, and comorbidities of each extrahepatic manifestation of HCV to identify possible research priorities for future investigation. Despite the introduction of DAAs and the more than 90% rate of SVR, about 38% of patients with chronic HCV infection develop at least one extrahepatic manifestation [17] (Table 1 and Table 2).

Table 1. Prevalence of extrahepatic manifestations in HCV infections.

EHMs	Authors	Study Method	Findings in HCV Patients (95%CI)
Diabetes mellitus	Younossi [9]	Systematic review (31 studies, n = 263,973)	Prevalence: 15% (13–18%)
	Younossi [18]	Systematic review (21 studies, n = 22,432)	Prevalence 19.0% (15.6–22.9%)
Cardiovascular and cerebrovascular disease	Lee [19]	Systematic review (36 studies, n = 341,739)	RR of cardiovascular events, MI, stroke 1.28 (1.15–1.42), 1.13 (1.00–1.28), 1.28 (1.18–1.39), respectively
	Petta [20]	Systematic review (22 studies, n = 390 602)	OR of CVD-related mortality, carotid plaques, and CVA 1.65 (1.07–2.56), 2.27(1.76–2.94), 1.30 (1.10–1.55), respectively
Mixed cryoglobulinemia	Younossi [9]	Systematic review (21 studies, n =	Prevalence: 30% (21.4–38.9%) OR 11.50 (4.56–29.00)

EHMs	Authors	Study Method	Findings in HCV Patients (95%CI)
A variety of skin diseases			4415)
Chronic kidney disease	Park [21]	Retrospective cohort (n = 55,646)	HR 16.91 (12.00–23.81)
	Park [21]	Retrospective cohort (n = 56,448)	HR of 1.27 (1.18–1.37)
	de Sanjose [22]	Case control (n = 11,053)	OR of Marginal zone lymphoma, DLBCL, and lymphoplasmacytic lymphoma 2.47 (1.44–4.23), 2.24 (1.68–2.99), 2.57 (1.14–5.79), respectively
Lymphoma	Pozzato [23]	Systematic review (50 studies, n = 21,262)	RR of NHL 2.3 (1.8–2.9)
	Gisbert [24]	Systematic review (50 studies, n = 2167)	Prevalence: 47–50% OR 275 (104–725)
Porphyria cutanea tarda	Younossi [9]	Systematic review [24] (7 studies, n = 970,315)	Prevalence: 0.5% (0.1–0.8) OR 8.53 (4.15–17.52)
Lichen planus	Alaizari [47] [25]	Systematic review (19 studies, n = 4326)	OR 6.07 (2.73–13.48)
Sjogren syndrome	Younossi [9]	Systematic review (11 studies, n = 38,789)	Prevalence: 11.9% (7.6–16.2%) RR 2.29 (0.19–27.09)
	Yeh [26]	Population-based analysis [48] (n = 48,145)	OR 2.49 (2.16–2.86)
	Younossi [9]	Systematic review (4 studies, n = 210,538) [48] [50] [51]	Prevalence: 1% (0.0–2.0%) OR 2.39 (1.52–3.77)
Rheumatoid arthritis	Younossi [18]	Systematic review (5 studies, n = 18,234) [52]	Prevalence: 4.5% (0.6–25.7%) OR 2.49 (1.79–3.45)
Thyroiditis	Shen [27]	Systematic review (12 studies, n = 3603)	Prevalence of hypothyroidism: 6.36% OR 3.10 (2.19–4.40)

From overload by porphyrin before initiating DAAs-based therapies, which produced a better response and improved SVR rates in chronic HCV infection [54]. With DAAs therapy, porphyrin levels are decreased significantly or completely reduced to normal levels, but data are limited [53]. A recent study by García-Fraile recruited 13 patients with HCV infection, and PCT demonstrated that SVR after DAAs treatment leads to PCT resolution [55].

2.2 Lichen Planus

Manifestations; OR, odd ratio; RR, relative risk; HR, hazard ratio; MI, myocardial ischemia; CVD, cardiovascular disease; CVA, cerebrovascular accident; DLBCL, diffuse large B cell lymphoma; NHL, Non-Hodgkin's lymphoma.

Lichen planus is a chronic inflammatory disorder affecting the skin and mucosal surfaces, it is a T-cell mediated disease affecting stratified squamous epithelium of the skin and/or mucus membranes. The classic manifestations include pruritic, polygonal, and purple papular plaques and the condition commonly affects middle-aged adults.

Lichen planus may appear in the skin, mucous membranes, scalp, nails, and genitalia. Oral lichen planus presents

Table 2: Independent risk factors and disease burden of HCV-associated extrahepatic manifestations.

EHM	Independent Factor	Disease Burden
Diabetes mellitus [28][29][30][31]	Cirrhosis, age [30], obesity, family history of DM, HCV genotype (1,2,4)	Increased risk of hepatic fibrosis, Increased risk of HCC
Cardiovascular disease [19][20][32][33][34]	DM, HTN, HIV coinfection	Increased risk of MI, cardiac dysfunction, [57] heart failure
Mixed cryoglobulinemia and renal disease [21][35] [25]	Cardiovascular disease, liver failure, infections, chronic renal failure	Increased risk of CKD
Lymphoma [59] [36][37]	Geographic variations	Increased risk of developing [60] chronic hepatitis, cirrhosis, and HCC
Sjogren syndrome [38][39][40]	Older age, liver disease activity	May increase risk of developing MALT lymphoma, malignant B cell non-Hodgkin lymphoma
Rheumatoid arthritis [41]	Smoking, previous history of arthritis	Data limited [62]
Thyroiditis [27][42][43]	Female, geographic variability	Data limited

response to HCV causes skin disease [62]. Genetic factors have been considered a possible factor in the development of oral lichen planus in HCV-infected patients involving HLA-DR6 compared to those without HCV infection. However, this research was conducted in Italy, and geographic differences have been postulated as a factor in developing oral lichen planus [63][64]. Another study showed that patients with oral lichen planus and HCV infection have higher levels of CD8+ lymphocytes in lamina propria compared with patients with oral lichenoid reaction [65]. Figueiredo hypothesized that the host immune system is responsible for oral lichen planus more than direct viral effects [66].

2.2.3. Burden and Outcomes after Treatment

Interferon (IFN) therapy is controversial in the management of HCV in patients with comorbid lichen planus, as there have been reports of both improvement and aggravation of lichen planus symptoms [67][68][69]. Studies on treatment with IFN-free DAAs are limited, and a case series with a small sample reported successful outcomes in HCV-associated oral lichen planus in all seven patients [70].

References

1. Global Hepatitis Report 2017; World Health Organization: Geneva, Switzerland, 2017.
2. Hofmeister, M.G.; Rosenthal, E.M.; Barker, L.K.; Rosenberg, E.S.; Barranco, M.A.; Hall, E.W.; Edlin, B.R.; Mermin, J.; Ward, J.W.; Ryerson, A.B. Estimating Prevalence of Hepatitis C Virus Infection in the United States, 2013–2016. *Hepatology* 2018, **69**, 1020–1031.
3. Kwong, A.; Kim, W.R.; Lake, J.R.; Smith, J.M.; Schladt, D.P.; Skeans, M.A.; Noreen, S.M.; Foutz, J.; Miller, E.; Snyder, J.J.; et al. OPTN/SRTR 2018 Annual Data Report: Liver. *Am. J. Transpl.* 2020, **20** (Suppl. S1), 193–299.
4. Grebely, J.; Prins, M.; Hellard, M.; Cox, A.L.; Osburn, W.O.; Lauer, G.; Page, K.; Lloyd, A.R.; Dore, G.J. Hepatitis C virus clearance, reinfection, and persistence, with insights from studies of injecting drug users: Towards a vaccine. *Lancet Infect. Dis.* 2012, **12**, 408–414.
5. Thrift, A.P.; El-Serag, H.B.; Kanwal, F. Global epidemiology and burden of HCV infection and HCV-related disease. *Nat. Rev. Gastroenterol. Hepatol.* 2017, **14**, 122–132.
6. Kim, D.; Adejumo, A.C.; Yoo, E.R.; Iqbal, U.; Li, A.A.; Pham, E.A.; Cholankeril, G.; Glenn, J.S.; Ahmed, A. Trends in Mortality From Extrahepatic Complications in Patients With Chronic Liver Disease, From 2007 Through 2017. *Gastroenterology* 2019, **157**, 1055–1066.e1011.
7. Lee, M.H.; Yang, H.I.; Lu, S.N.; Jen, C.L.; You, S.L.; Wang, L.Y.; Wang, C.H.; Chen, W.J.; Chen, C.J.; Group, R.E.V.E.A.L.H.S. Chronic hepatitis C virus infection increases mortality from hepatic and extrahepatic diseases: A community-based long-term prospective study. *J. Infect. Dis.* 2012, **206**, 469–477.
8. Cacoub, P.; Poinard, T.; Ghillani, P.; Charlotte, F.; Olivi, M.; Piette, J.C.; Opolon, P. Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC Group. Multidepartment Virus C. *Arthritis Rheum.* 1999, **42**, 2204–2212.
9. Younossi, Z.; Park, H.; Henry, L.; Adeyemi, A.; Stepanova, M. Extrahepatic Manifestations of Hepatitis C: A Meta-analysis of Prevalence, Quality of Life, and Economic Burden. *Gastroenterology* 2016, **150**, 1599–1608.
10. Cheng, Z.; Zhou, B.; Shi, X.; Zhang, Y.; Zhang, L.; Chen, L.; Liu, X. Extrahepatic manifestations of chronic hepatitis C virus infection: 297 cases from a tertiary medical center in Beijing, China. *Chin. Med. J.* 2014, **127**, 1206–1210.
11. Chang, M.; Williams, O.; Mittler, J.; Quintanilla, A.; Carithers, R.L.; Perkins, J.; Corey, L.; Gretch, D.R. Dynamics of hepatitis C virus replication in human liver. *Am. J. Pathol.* 2003, **163**, 433–444.
12. Schijman, A.; Colina, R.; Mukomolov, S.; Kalinina, O.; García, L.; Broor, S.; Bhupatiraju, A.V.; Karayiannis, P.; Khan, B.; Mogdasy, C.; et al. Comparison of hepatitis C viral loads in patients with or without coinfection with different genotypes. *Clin. Diagn. Lab. Immunol.* 2004, **11**, 433–435.

13. Cacoub, P.; Saadoun, D. Extrahepatic Manifestations of Chronic HCV Infection. *N. Engl. J. Med.* 2021, 384, 1038–1052.
14. AASLD/IDSA HCV Guidance Panel. Recommendations for Testing, Managing, and Treating Hepatitis C. Updated August 27, 2020. 2020. Available online: <http://hcvguidelines.org/> (accessed on 20 September 2022).
15. Rossi, C.; Jeong, D.; Wong, S.; McKee, G.; Butt, Z.A.; Buxton, J.; Wong, J.; Darvishian, M.; Bartlett, S.; Samji, H.; et al. Sustained virological response from interferon-based hepatitis C regimens is associated with reduced risk of extrahepatic manifestations. *J. Hepatol.* 2019, 71, 1116–1125.
16. Reau, N.; Vekeman, F.; Wu, E.; Bao, Y.; Gonzalez, Y.S. Prevalence and economic burden of extrahepatic manifestations of hepatitis C virus are underestimated but can be improved with therapy. *Hepatol. Commun.* 2017, 1, 439–452.
17. Mayo, M.J.; Kaplan, N.M.; Palmer, B.F. Extrahepatic Manifestations of Hepatitis C Infection. *Am. J. Med. Sci.* 2003, 325, 135–148.
18. Younossi, Z.M.; Henry, L.; PO, J.; Tanaka, A.; Eguchi, Y.; Mizokami, M.; Lim, Y.S.; Dan, Y.Y.; Yu, M.L.; Stepanova, M. Systematic review with meta-analysis: Extrahepatic manifestations in chronic hepatitis C virus-infected patients in East Asia. *Aliment. Pharm.* 2019, 49, 644–653.
19. Lee, K.K.; Stelzle, D.; Bing, R.; Anwar, M.; Strachan, F.; Bashir, S.; Newby, D.E.; Shah, J.S.; Chung, M.H.; Bloomfield, G.S.; et al. Global burden of atherosclerotic cardiovascular disease in people with hepatitis C virus infection: A systematic review, meta-analysis, and modelling study. *Lancet Gastroenterol. Hepatol.* 2019, 4, 794–804.
20. Petta, S.; Maida, M.; Macaluso, F.S.; Barbara, M.; Licata, A.; Craxi, A.; Camma, C. Hepatitis C Virus Infection Is Associated With Increased Cardiovascular Mortality: A Meta-Analysis of Observational Studies. *Gastroenterology* 2016, 150, 145–155 e144; quiz e115-146.
21. Park, H.; Chen, C.; Wang, W.; Henry, L.; Cook, R.L.; Nelson, D.R. Chronic hepatitis C virus (HCV) increases the risk of chronic kidney disease (CKD) while effective HCV treatment decreases the incidence of CKD. *Hepatology* 2018, 67, 492–504.
22. de Sanjose, S.; Benavente, Y.; Vajdic, C.M.; Engels, E.A.; Morton, L.M.; Bracci, P.M.; Spinelli, J.J.; Zheng, T.; Zhang, Y.; Franceschi, S.; et al. Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. *Clin. Gastroenterol. Hepatol.* 2008, 6, 451–458.
23. Pozzato, G.; Mazzaro, C.; Dal Maso, L.; Mauro, E.; Zorat, F.; Moratelli, G.; Bulian, P.; Serraino, D.; Gattei, V. Hepatitis C virus and non-Hodgkin's lymphomas: Meta-analysis of epidemiology data and therapy options. *World J. Hepatol.* 2016, 8, 107–116.

24. Gisbert, J.P.; Garcia-Buey, L.; Pajares, J.M.; Moreno-Otero, R. Prevalence of hepatitis C virus infection in porphyria cutanea tarda: Systematic review and meta-analysis. *J. Hepatol.* 2003, **39**, 620–627.

25. Alaizari, N.A.; Al-Maweri, S.A.; Al-Shamiri, H.M.; Tarakji, B.; Shugaa-Addin, B. Hepatitis C virus infections in oral lichen planus: A systematic review and meta-analysis. *Aust Dent. J.* 2016, **61**, 282–287.

26. Yeh, C.C.; Wang, W.C.; Wu, C.S.; Sung, F.C.; Su, C.T.; Shieh, Y.H.; Chang, S.N.; Su, F.H. Association of Sjogrens Syndrome in Patients with Chronic Hepatitis Virus Infection: A Population-Based Analysis. *PLoS ONE* 2016, **11**, e0161958.

27. Shen, Y.; Wang, X.L.; Xie, J.P.; Shao, J.G.; Lu, Y.H.; Zhang, S.; Qin, G. Thyroid Disturbance in Patients with Chronic Hepatitis C Infection: A Systematic Review and Meta-analysis. *J. Gastrointestin Liver Dis.* 2016, **25**, 227–234.

28. Hammerstad, S.S.; Grock, S.F.; Lee, H.J.; Hasham, A.; Sundaram, N.; Tomer, Y. Diabetes and Hepatitis C: A Two-Way Association. *Front. Endocrinol.* 2015, **6**, 134.

29. Lecube, A.; Hernández, C.; Genescà, J.; Simó, R. Glucose Abnormalities in Patients with Hepatitis C Virus Infection. *Epidemiol. Pathog.* 2006, **29**, 1140–1149.

30. D’Souza, R.; Sabin, C.A.; Foster, G.R. Insulin resistance plays a significant role in liver fibrosis in chronic hepatitis C and in the response to antiviral therapy. *Am. J. Gastroenterol.* 2005, **100**, 1509–1515.

31. El-Serag, H.B.; Tran, T.; Everhart, J.E. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. *Gastroenterology* 2004, **126**, 460–468.

32. Petta, S.; Adinolfi, L.E.; Fracanzani, A.L.; Rini, F.; Caldarella, R.; Calvaruso, V.; Camma, C.; Ciaccio, M.; Di Marco, V.; Grimaudo, S.; et al. Hepatitis C virus eradication by direct-acting antiviral agents improves carotid atherosclerosis in patients with severe liver fibrosis. *J. Hepatol.* 2018, **69**, 18–24.

33. Lin, M.S.; Guo, S.E.; Chen, M.Y.; Huang, T.J.; Huang, J.C.; Hu, J.H.; Lin, Y.S. The impact of hepatitis C infection on ischemic heart disease via ischemic electrocardiogram. *Am. J. Med. Sci.* 2014, **347**, 478–484.

34. Cacoub, P. Hepatitis C Virus Infection, a New Modifiable Cardiovascular Risk Factor. *Gastroenterology* 2019, **156**, 862–864.

35. Ferri, C.; Sebastiani, M.; Giuggioli, D.; Cazzato, M.; Longombardo, G.; Antonelli, A.; Puccini, R.; Michelassi, C.; Zignego, A.L. Mixed cryoglobulinemia: Demographic, clinical, and serologic features and survival in 231 patients. *Semin Arthritis Rheum.* 2004, **33**, 355–374.

36. Torres, H.A.; Mahale, P. Most patients with HCV-associated lymphoma present with mild liver disease: A call to revise antiviral treatment prioritization. *Liver Int. Off. J. Int. Assoc. Study Liver* 2015, 35, 1661–1664.

37. Shimono, J.; Miyoshi, H.; Kato, T.; Sugio, T.; Miyawaki, K.; Kamimura, T.; Miyagishima, T.; Eto, T.; Imaizumi, Y.; Kato, K.; et al. Hepatitis C virus infection is an independent prognostic factor in follicular lymphoma. *Oncotarget* 2018, 9, 1717–1725.

38. Loustaud-Ratti, V.; Riche, A.; Liozon, E.; Labrousse, F.; Soria, P.; Rogez, S.; Babany, G.; Delaire, L.; Denis, F.; Vidal, E. Prevalence and characteristics of Sjogren's syndrome or Sicca syndrome in chronic hepatitis C virus infection: A prospective study. *J. Rheumatol.* 2001, 28, 2245–2251.

39. Ioannidis, J.P.; Vassiliou, V.A.; Moutsopoulos, H.M. Long-term risk of mortality and lymphoproliferative disease and predictive classification of primary Sjogren's syndrome. *Arthritis Rheum.* 2002, 46, 741–747.

40. Voulgarelis, M.; Dafni, U.G.; Isenberg, D.A.; Moutsopoulos, H.M. Malignant lymphoma in primary Sjogren's syndrome: A multicenter, retrospective, clinical study by the European Concerted Action on Sjogren's Syndrome. *Arthritis Rheum.* 1999, 42, 1765–1772.

41. Nissen, M.J.; Fontanges, E.; Allam, Y.; Zoulim, F.; Trepo, C.; Miossec, P. Rheumatological manifestations of hepatitis C: Incidence in a rheumatology and non-rheumatology setting and the effect of methotrexate and interferon. *Rheumatology* 2005, 44, 1016–1020.

42. Testa, A.; Castaldi, P.; Fant, V.; Fiore, G.F.; Grieco, V.; De Rosa, A.; Pazardjiklian, M.G.; De Rosa, G. Prevalence of HCV antibodies in autoimmune thyroid disease. *Eur Rev. Med. Pharm. Sci.* 2006, 10, 183–186.

43. Mao, X.R.; Zhang, L.T.; Chen, H.; Xiao, P.; Zhang, Y.C. Possible factors affecting thyroid dysfunction in hepatitis C virus-infected untreated patients. *Exp. Med.* 2014, 8, 133–140.

44. Garcovich, S.; Garcovich, M.; Capizzi, R.; Gasbarrini, A.; Zocco, M.A. Cutaneous manifestations of hepatitis C in the era of new antiviral agents. *World J. Hepatol.* 2015, 7, 2740–2748.

45. Chemmanur, A.T.; Bonkovsky, H.L. Hepatic porphyrias: Diagnosis and management. *Clin. Liver Dis.* 2004, 8, 807–838.

46. Kushner, J.P.; Barbuto, A.J.; Lee, G.R. An inherited enzymatic defect in porphyria cutanea tarda: Decreased uroporphyrinogen decarboxylase activity. *J. Clin. Invest.* 1976, 58, 1089–1097.

47. Chuang, T.Y.; Brashear, R.; Lewis, C. Porphyria cutanea tarda and hepatitis C virus: A case-control study and meta-analysis of the literature. *J. Am. Acad Derm.* 1999, 41, 31–36.

48. Bonkovsky, H.L.; Poh-Fitzpatrick, M.; Pimstone, N.; Obando, J.; Di Bisceglie, A.; Tattrie, C.; Tortorelli, K.; LeClair, P.; Mercurio, M.G.; Lambrecht, R.W. Porphyria cutanea tarda, hepatitis C, and HFE gene mutations in North America. *Hepatology* 1998, 27, 1661–1669.

49. To-Figueras, J. Association between hepatitis C virus and porphyria cutanea tarda. *Mol. Genet. Metab* 2019, 128, 282–287.

50. Jalil, S.; Grady, J.J.; Lee, C.; Anderson, K.E. Associations among behavior-related susceptibility factors in porphyria cutanea tarda. *Clin. Gastroenterol. Hepatol.* 2010, 8, 297–302.e291.

51. Sampietro, M.; Piperno, A.; Lupica, L.; Arosio, C.; Vergani, A.; Corbetta, N.; Malosio, I.; Mattioli, M.; Fracanzani, A.L.; Cappellini, M.D.; et al. High prevalence of the His63Asp HFE mutation in Italian patients with porphyria cutanea tarda. *Hepatology* 1998, 27, 181–184.

52. Sastre, L.; To-Figueras, J.; Lens, S.; Rodriguez-Tajes, S.; Bartres, C.; Aguilera, P.; Badenas, C.; Oliva, R.; Pocurull, A.; Forns, X.; et al. Resolution of subclinical porphyria cutanea tarda after hepatitis C eradication with direct-acting anti-virals. *Aliment. Pharm.* 2020, 51, 968–973.

53. Singal, A.K.; Venkata, K.V.R.; Jampana, S.; Islam, F.U.; Anderson, K.E. Hepatitis C Treatment in Patients With Porphyria Cutanea Tarda. *Am. J. Med. Sci* 2017, 353, 523–528.

54. Desai, T.K.; Jamil, L.H.; Balasubramaniam, M.; Koff, R.; Bonkovsky, H.L. Phlebotomy improves therapeutic response to interferon in patients with chronic hepatitis C: A meta-analysis of six prospective randomized controlled trials. *Dig. Dis. Sci* 2008, 53, 815–822.

55. García-Fraile, L.J.; García-Buey, L.; Alonso Cerezo, C.; Sanz Sanz, J.; de los Santos Gil, I. Evolution of HCV associated porphyria cutanea tarda after HCV sustained virologic response by direct acting antivirals. *Gastroenterol. ÍA Y Hepatol. ÍA* 2022, 45, 249–255.

56. Boch, K.; Langan, E.A.; Kridin, K.; Zillikens, D.; Ludwig, R.J.; Bieber, K. Lichen Planus. *Front. Med. (Lausanne)* 2021, 8, 737813.

57. Carrozzo, M.; Thorpe, R. Oral lichen planus: A review. *Minerva Stomatol.* 2009, 58, 519–537.

58. Lodi, G.; Pellicano, R.; Carrozzo, M. Hepatitis C virus infection and lichen planus: A systematic review with meta-analysis. *Oral Dis.* 2010, 16, 601–612.

59. Remmerbach, T.W.; Liese, J.; Krause, S.; Schiefke, I.; Schiefke, F.; Maier, M.; Liebert, U.G. No association of oral lichen planus and hepatitis C virus infection in central Germany. *Clin. Oral. Investig.* 2016, 20, 193–197.

60. Carrozzo, M.; Brancatello, F.; Dametto, E.; Arduino, P.; Pentenero, M.; Rendine, S.; Porter, S.R.; Lodi, G.; Scully, C.; Gandolfo, S. Hepatitis C virus-associated oral lichen planus: Is the geographical heterogeneity related to HLA-DR6? *J. Oral. Pathol. Med.* 2005, 34, 204–208.

61. Roopashree, M.R.; Gondhalekar, R.V.; Shashikanth, M.C.; George, J.; Thippeswamy, S.H.; Shukla, A. Pathogenesis of oral lichen planus--a review. *J. Oral Pathol. Med.* 2010, 39, 729–734.

62. Georgescu, S.R.; Tampa, M.; Mitran, M.I.; Mitran, C.I.; Sarbu, M.I.; Nicolae, I.; Matei, C.; Caruntu, C.; Neagu, M.; Popa, M.I. Potential pathogenic mechanisms involved in the association between lichen planus and hepatitis C virus infection. *Exp. Med.* 2019, 17, 1045–1051.

63. Farhi, D.; Dupin, N. Pathophysiology, etiologic factors, and clinical management of oral lichen planus, part I: Facts and controversies. *Clin. Derm.* 2010, 28, 100–108.
64. Carrozzo, M.; Francia Di Celle, P.; Gandolfo, S.; Carbone, M.; Conrotto, D.; Fasano, M.E.; Roggero, S.; Rendine, S.; Ghisetti, V. Increased frequency of HLA-DR6 allele in Italian patients with hepatitis C virus-associated oral lichen planus. *Br. J. Derm.* 2001, 144, 803–808.
65. Mega, H.; Jiang, W.W.; Takagi, M. Immunohistochemical study of oral lichen planus associated with hepatitis C virus infection, oral lichenoid contact sensitivity reaction and idiopathic oral lichen planus. *Oral Dis.* 2001, 7, 296–305.
66. Figueiredo, L.C.; Carrilho, F.J.; De Andrade, H.F.; Migliari, D.A. Oral lichen planus and hepatitis C virus infection. *Oral Dis.* 2002, 8, 42–46.
67. Doutre, M.S.; Beylot, C.; Couzigou, P.; Long, P.; Royer, P.; Beylot, J. Lichen planus and virus C hepatitis: Disappearance of the lichen under interferon alfa therapy. *Dermatology* 1992, 184, 229.
68. Protzer, U.; Ochsendorf, F.R.; Leopolder-Ochsendorf, A.; Holtermuller, K.H. Exacerbation of lichen planus during interferon alfa-2a therapy for chronic active hepatitis C. *Gastroenterology* 1993, 104, 903–905.
69. Schlesinger, T.E.; Camisa, C.; Gay, J.D.; Bergfeld, W.F. Oral erosive lichen planus with epidermolytic hyperkeratosis during interferon alfa-2b therapy for chronic hepatitis C virus infection. *J. Am. Acad Derm.* 1997, 36, 1023–1025.
70. Nagao, Y.; Kimura, K.; Kawahigashi, Y.; Sata, M. Successful Treatment of Hepatitis C Virus-associated Oral Lichen Planus by Interferon-free Therapy with Direct-acting Antivirals. *Clin. Transl. Gastroenterol.* 2016, 7, e179.

Retrieved from <https://encyclopedia.pub/entry/history/show/88914>