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Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning

calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that

may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different

quantum platforms have been considered for quantum machine learning and specifically for quantum

reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with

quantum platforms. This quantum technology may enhance quantum computation and communication, as well as

machine learning, via the fruitful marriage between these previously unrelated fields. 

quantum machine learning  quantum reinforcement learning  quantum photonics

quantum technologies  quantum communication

1. Introduction

The field of quantum machine learning promises to employ quantum systems for accelerating machine

learning   calculations, as well as employing machine learning techniques to better control quantum systems. In

the past few years, several books as well as reviews on this topic have appeared .

Inside artificial intelligence and machine learning, the area of reinforcement learning designs “intelligent” agents

capable of interacting with their outer world, the “environment”, and adapt to it, via reward mechanisms , see

Figure 1. These agents aim at achieving a final goal that maximizes their long-term rewards. This kind of machine

learning protocol is, arguably, the most similar one to the way the human brain learns. The field of quantum

machine learning is recently exploring the fruitful combination of reinforcement learning protocols with quantum

systems, giving rise to quantum reinforcement learning 

.
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Figure 1. Reinforcement learning protocol. A system, called agent, interacts with its external world, the

environment, carrying out some action on it, while receiving information from it. Afterwards, the agent acts

accordingly in order to achieve some long-term goal, via feedback with rewards, iterating the process several

times.

Different quantum platforms are being considered for the implementation of quantum machine learning. Among

them, trapped ions, superconducting circuits, and quantum photonics, seem promising due to the advanced

development stage of the technology. In particular, the latter is appropriate because of the good integration with

communication networks, information processing at the speed of light, as well as possible realization of quantum

computations with integrated photonics . Moreover, in the scenario with a reduced amount of measurements,

quantum reinforcement learning with quantum photonics has been shown to perform better than standard quantum

tomography . Quantum reinforcement learning with quantum photonics has been proposed   and

implemented   in diverse works. Even before these articles were produced, a pioneering experiment of quantum

supervised and unsupervised learning with quantum photonics was carried out .

In this topic review, we give an overview of the field of quantum reinforcement learning, focusing mainly on

quantum devices employed for reinforcement learning algorithms , in Section 2.

2. Quantum Reinforcement Learning

 

The fields of reinforcement learning and quantum technologies have started to merge recently in a novel area,

named quantum reinforcement learning .
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A subset inside this field is composed of articles studying quantum systems that carry out reinforcement learning

algorithms, ideally with some speedup .

In Ref. , a pioneer proposal for reinforcement learning using quantum systems was put forward. This employed

a Grover-like search algorithm, which could provide a quadratic speedup in the learning process as compared to

classical computers .

Ref.   provided a quantum algorithm for reinforcement learning in which a quantum agent, possessing a quantum

processor, can couple classically with a classical environment, obtaining classical information from it. The speedup

in this case would come from the quantum processing of the classical information, which could be done faster than

with classical computers. This is also based on Grover search, with a corresponding quadratic speedup.

In Ref. , a quantum algorithm considers a quantum agent coupled to a quantum oracular environment, attaining

a proven speedup with this kind of configuration, which can be exponential in some situations. The quantum

algorithm could be applied to diverse kinds of learning, namely reinforcement learning, but also supervised and

unsupervised learning.

Refs. 10]  have speedups with respect to classical algorithms. While the first two rely on a polynomial gain

due to a Grover-like algorithm, the latter achieves its proven speedup via a quantum oracular environment.

The series of articles in Refs.   study quantum reinforcement learning protocols with basic quantum

systems coupled to small quantum environments. These works focus mainly on proposals for implementations 

 as well as experimental realizations in quantum photonics  and superconducting circuits . In the

theoretical proposals, small few-qubit quantum systems are proposed both for quantum agents and quantum

environments. In Ref. , the aim of the agent is to achieve a final state which cannot be distinguished from the

environment state, even if the latter has to be modified, as it is a single-copy protocol. In order to achieve this goal,

measurements are allowed, as well as classical feedback inside the coherence time. Ref.   extends the previous

protocol to the case in which measurements are not considered, but instead further ancillary qubits coupled via

entangling gates to agent and environment are employed, and later on disregarded. In Ref. , several identical

copies of the environment state are considered, such that the agent, via trial and error, or, equivalently, a balance

between exploration and exploitation, iteratively approaches the environment state. This proposal was carried out

in a quantum photonics experiment   as well as with superconducting circuits . In Ref. , a further extension

of Ref.  to operator estimation, instead of state estimation, was proposed and analyzed.

Ref.   obtained a speedup as well with respect to standard quantum tomography, in the scenario with a reduced

amount of resources, in the sense of reduced number of measurements.

Finally, Ref.   considered different paradigms of learning inside a reinforcement learning framework, which

included projective simulation   and a possible implementation with quantum photonics devices. The latter, with
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high-repetition rates, high-bandwith and low crosstalks, as well as the possibility to propagate to long distances,

makes this quantum platform an attractive one for this kind of protocol.
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