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The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been

overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small

molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against

a specific target. The development of novel targets and small molecular candidates against different diseases including

emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic

targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling

approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features.

Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to

comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug

have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound

against a specific disease with minimal cost.

Keywords: mathematical modeling ; CADD ; QSAR ; MM-GBSA ; MM-PBSA ; pharmacophore modeling ; MD simulation ;

biological activity ; drug design

1. Introduction

A drug is a type of natural or synthetic chemical that is used to prevent, treat, or diagnose disease . It can be able to

alter the function of a biological system or target from the molecular to the cellular level. Drug discovery helps to

determine new therapeutic candidates by using different computational, experimental, and clinical models. The integrated

approaches led to the identification of novel drugs not only from plants but also from other chemical sources . Although

various therapeutic compounds originating from plant products are highly regarded, synthetic chemistry and biotechnology

products account for the majority of medications in the current medical system . The subject of drug development is

exceedingly difficult and needs proper infrastructure and laboratory resources. Unfortunately, the traditional strategy of

discovering new drug compounds is a time-consuming process that can take up to 10–15 years and can cost up to USD

2.558 billion to bring a therapeutic to market . This is a multistage and complex process that begins with the

identification of an appropriate drug target, followed by drug target validation, hit-to-lead identification, and lead molecule

optimization, as well as preclinical and clinical research . Despite the huge financial and time commitments required for

medication development, clinical trial success is just 13%, with a high drug attrition rate .

A mathematical model is a powerful representation of a biological system that uses mathematical ideas and language to

produce an accurate description of the system of principles . The model helps in determining the operation process as

well as anticipating certain influencing factors and enables the simulation of complex biological processes that generate

hypotheses and suggest experiments . The model also known as forecasting modeling is now frequently used to guide

drug development at the industrial level. For example, simulation is the more direct approach that utilizes a mathematical

model and predicts system behavior under given conditions . Mathematical model-based biological complex system

analysis has high productivity and low cost. The process generates novel lead compounds that undergo clinical trials and

reach the market . Most of the major obstacles that arose during the conventional drug design and discovery process

may be overcome by employing mathematical models . These models are now being utilized in in silico research to

describe various pharmacological properties of potential medicinal drugs . For example, the FDA’s Center for Drug

Evaluation and Research (CDER) uses modeling and computer simulations at various phases of drug discovery .

Currently, CADD has proven to be a useful and powerful strategy in the manufacture of various medicines . The

approach has assisted in overcoming the drawbacks of a time-consuming and expensive procedure in drug research and
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development . In the latest drug design process, the in silico approach is more important than before. CADD methods

such as pharmacophore modeling, virtual screening, molecular docking, and dynamic simulation are frequently applied to

identify, develop, and evaluate medicinal properties as well as comparable physiological activity of substances . To

quantify the binding efficiency and toxicity of a compound in the classical drug development process, massive in vitro and

in vivo trials are required . CADD techniques include a molecular docking methodology that can effectively categorize a

large number of molecules with higher binding effectiveness . The method can be used to identify the interaction

between a ligand and a receptor at the atomic scale, which helps to identify the binding position of a molecular to a target

protein and subsequently provides an idea about the biochemical process . The technique also provides information

regarding the target behavior and predicts how a protein (enzyme) interacts with small molecules (ligands) at the binding

site of target proteins and facilitates the evaluation of the biological activity of a molecular candidate . Additionally, the

CADD approaches include different pharmacology properties analysis tools that can evaluate a compound’s

pharmacokinetic (PK) parameters such as bioavailability, toxicity, and effectiveness within a short period. Furthermore, the

CADD approaches also include molecular dynamics (MD) simulation techniques that can determine a ligand’s binding

stability towards its receptor, which is more suitable and accurate . 

2. Target Identification

The early stages of drug discovery probably start with target selection and later move to lead optimization. In the process

of potential disease, target discovery is dependent on a variety of resources, involving academic studies, clinical

investigations, and the business sector. The pharmaceutical industry, as well as numerous research organizations, use

the designated target to locate molecules for developing authorized treatments . Several preliminary stages are

involved in this procedure. Throughout the process of target identification and validation, researchers search for chemicals

to disrupt a particular biological path that is connected to a certain illness . These compounds can be found in nature,

identified through high-throughput screening of large compound libraries, or synthesized as analogs of other drugs that

have been proven to be effective against a specific disease. The initial stages in target classification and identification are

to determine the function of a possible therapeutic target (which may be a gene or protein) and its involvement in the

illness . The molecular processes addressed by the objective are characterized by the following target identification. A

good target must always be productive, safe, suitable, and druggable, and it must fulfill clinical and financial requirements.

Target identification may be divided into two types: the system biology approach and the molecular biology approach. The

system biology approach is a technique that involves studying diseases in complete organisms and selecting targets

based on data from clinical trials and in vivo animal research . The molecular biology method, which is at the heart of

today’s target identification efforts, aims to find “druggable” targets whose activity may be influenced by associations with

molecules, proteins, and sometimes antibodies. Since the biological factors involved in human diseases are so

complicated, the foremost essential issue in target identification is not only identifying, optimizing, and choosing

trustworthy “druggable” targets, but also truly comprehending the cell membrane associations that identify disease

patterns, developing predictive models, and building biological mechanisms for human diseases . For example, G-

protein-coupled receptors (GPCRs) and protein kinases are highly “druggable” targets that were identified throughout the

molecular biology-based methods .

Network-based drug discovery, a field that utilizes information in drug–protein and protein–disease networks, may also be

used to study target identification . This strategy entails a highly collaborative scheme between databases and

correlations across genomics, transcriptomics, proteomics, metabolomics, the study of the microbiome, and

pharmacogenomics, and it is heavily reliant on the development of relevant mathematical, computational, and systems

biology tools that connect pharmacological and genomic domains and create computational frameworks for drug target

discovery . Another recent network-based application was the combination of large-scale structural genomics and

disease association studies to produce a three-dimensional human interactome, which resulted in the identification of

candidate genes for previously unknown disease-to-gene associations with proposed molecular mechanisms.

3. Mathematical Models in Drug Design

Mathematical techniques for drug discovery have a high value because of their potential effect and low cost compared to

preclinical studies . The employment of mathematical models, as well as computer simulations, has several

advantages. It can be very helpful for systematically determining the relevance of a specific target or pathway for the

overall behavior of the system. First, the inconsistencies between the behavior forecasted by a mathematical model and

the behavior observed in actual trials might point to missing components, in which the mathematical model allows for a

briefer image of a biological mechanism to develop. Although it is not clear which compounds are absent from the system

under review, the mathematical model research findings may be used to influence the construction of additional
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investigations to address the problem. In addition, mathematical models enable a systematic analysis of system

fluctuations triggered by the delivery of drugs . However, it is difficult to represent real-world systems such as biological

systems in terms of mathematical relationships . Figure 1 shows the process of the use of a mathematical model in the

drug design process.

Figure 1.  A schematic representation of a mathematical model, including experimental design, experimental data

analysis, model optimization, and model validation, used in modern drug design approaches.

Pharmacokinetic and pharmacodynamic analyses are the earliest and most widely used forms of mathematics in drug

design. Pharmacokinetics is the study that describes how drug concentrations change over time, whereas

pharmacodynamics explains how drug effects fluctuate with concentration. Pharmacokinetics depict a possible drug’s

concentration in the appropriate organ compartments (e.g., circulating blood). Pharmacodynamic models relate this

concentration to a biomarker that is thought to be linked with a disease state, often considering the modification of the

pharmaceutical target .

Cancer research is a good example of how mathematical models are used in drug discovery. One of the most widely

employed mathematical models in cancer treatment research is integrated into network-based medicine . Network

medicine is a discipline of medicine that explores molecular and physiological links with therapeutic implications.

Infectious diseases, such as malaria, are another instance of a mathematical model application in drug innovation . In

this situation, mathematical models may be employed to evaluate the prospective drug’s capacity to destroy the parasite

at a different phase of the disease. Compound pharmacokinetics and compound pharmacodynamics are used in such

models. COVID-19, an infectious viral disease, is the most recent example of how mathematical models are employed in

drug discovery .

4. Protein Structure Prediction

Proteins are vital molecules that are involved in a variety of biological activities. Protein structure prediction or modeling is

critical since a protein’s activity is largely determined by its three-dimensional structure. Furthermore, a protein’s 3D

structure is determined by its amino acid composition. Experiments using X-ray crystallography or NMR spectroscopy to

resolve protein structure are time-consuming, expensive, and complex . Consequently, theoretical knowledge of protein

structure, dynamics, and folding has been used to construct a model from amino acid sequences due to the improvement

of computer methods and computational tools. The approaches for predicting protein structure may be divided into three

categories (Figure 2): (a) homology modeling; (b) threading; (c) ab initio methods (de novo).
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Figure 2.  Representation of the protein structure prediction methods: (a) homology-based approach; (b) threading

approach; (c) ab initio approach.

The most effective computer technique for protein structure prediction is homology modeling, which involves predicting an

unknown structure using a similar known protein structure as a framework . An ideal therapeutic simulation of a protein

may be built by assigning a structure based on sequence alignment and then creating the model and minimizing energy.

Despite homology modeling’s predictive potential and utility, some issues remain. Firstly, the amounts of target-template

architectural conservation and alignment precision are key indicators of the model’s quality. If the identity of the template

sequence is below 20%, around 50% of residues inside the layout are likely to be misaligned. Another concern includes

that homology modeling systems should develop innovative ways to manage the expanding number of existing protein

molecules. To date, different homology modeling tools has been developed and the most frequent use tools use for the

modeling has been listed in Table 1.

Threading a sequence throughout a fold involves a precise adjustment of the protein’s amino acid sequence with the

folding motif’s corresponding amino acid residue residues. The main goal of this technique is to determine the most

possible fold from a given sequence or to find appropriate sequences that might fold into a certain structure. Threading

performance is characterized by the number of useable folds whose structures are determined precisely towards the

atomic level . Threading processes, which use approaches for aligning sequences with 3D shapes to determine the

proper folding of a given sequence from a range of possibilities, were used to make the predictions.

In absence of an experimentally solved structure of a similar/homologous protein, ab initio (de novo) protein structure

prediction is a technique for evaluating the three-dimensional structure, when an experimentally solved structure of a

similar/homologous protein is not present. The energy function guides the construction of protein structure in this strategy.

The ab initio (from scratch) methodologies are based on first-principles physics and chemistry regulations, as well as the

premise that a protein’s natural structure always remains at the lowest energy level . However, the precision of ab initio

modeling is poor, and performance is generally limited to tiny proteins (120 residues).

Table 1. Summary of the most widely recognized homology modeling tools use in drug development.

No Name Application Availability Reference

1. I-TASSER Reassembling
fragment
structure via
threading

https://zhanggroup.org/I-TASSER/

2. SWISS-MODEL Segment
assembly/local
similarity

https://swissmodel.expasy.org/

3. ESyPred3D 3D modeling,
template
identification,
and alignment

https://www.unamur.be/sciences/biologie/urbm/bioinfo/esypred/
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No Name Application Availability Reference

4. HH-suite Template
detection,
alignment, 3D
modeling

https://arquivo.pt/wayback/20160514083149/http:/toolkit.tuebingen.mpg.de/hhpred

5. RaptorX Protein 3D
modeling,
remote
homology
discovery, and
binding site
prediction

http://raptorx.uchicago.edu/

6. FoldX Protein design
and energy
calculations

https://foldxsuite.crg.eu/

7. ROBETTA Rosetta
homology
modeling and
fragment
assembly from
scratch with
Ginzu domain
prediction

http://robetta.bakerlab.org/

8. BHAGEERATH-
H

Methods of ab
initio folding
and homology
are combined

http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp

9. Prime Homology
modeling,
evaluation,
and refining of
the produced
model using
the energy
function

https://www.schrodinger.com/prime

10. LOMETS Tertiary
structure
prediction with
a local meta-
threading
server

https://zhanglab.ccmb.med.umich.edu/

5. Computer-Aided Drug Design

Computer-aided drug design methods have been applied in the field of drug development over the past two decades .

Currently, this is seen as one of the best appropriate alternatives to high-throughput screening, which is routinely used in

drug design and development. CADD may be used for all efforts that have been made throughout the process of drug

development that can be described mathematically and analyzed using numerical methods . Figure 3 demonstrates

the basic CADD approach that may be utilized interactively with experimental methodologies to find novel drug targets

and direct iterative ligand optimization. Structure-based and ligand-based drug design techniques are two types of CADD

that have been widely used throughout the development of drugs process to find acceptable lead compounds. The CADD

approaches help to expedite the drug discovery and development process by minimizing the cost and time . However,

if the computer system crashes unexpectedly, the CADD designs might be lost. If proper precautions are not performed,

viruses will infect the computer system.
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Figure 3. Representation of the basic workflow of computational drug design approaches. The CADD approaches include

structure- and ligand-based drug design approaches, pharmacophore modeling, virtual screening, molecular docking,

ADMET, dynamics simulation, and MM-GBSA or MM-PBSA approaches.

5.1. Structure-Based Drug Design

Structure-based drug design (SBDD) (or direct techniques) can be used if the target’s spatial structure is available.

Compounds with qualities complementary to the target area can be created based on the properties and features of the

macromolecule’s spatial structure. X-ray crystallography, NMR, and in silico homology-based prediction approaches can

all be used to determine a protein’s 3D structure. The protein’s binding/active site is discovered when the three-

dimensional structure is understood. Structure-based pharmacophore modeling, virtual screening (SBVS), molecular

docking, and molecular dynamics (MD) simulations are some of the typical methodologies used in SBDD.

5.1.1. Structure-Based Pharmacophore Modeling

The pharmacophore features are discovered by utilizing the shape of the complicated molecular target . The

characteristics are founded on a single X-ray crystallized target–ligand complex. The pharmacophore characteristics are

built using a single ligand as well as its associations with the specific target protein. The fundamental contrast between

ligand-based and structure-based approaches is the number of ligands utilized to construct the pharmacophore. The

ligand-based technique necessitates at least 30 actives, whereas the structure-based method necessitates only one

ligand and its connection with the receptor. Furthermore, the pharmacophore technique is derived from an active site of

the ligand. Another method for creating a structure-based pharmacophore is to employ an APO template in such a way

that the active site amino acids are determined and then develop a feature list based on their interaction properties that
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may be included in the pharmacophore . The only drawback is when the list predicts too many features (more than

seven features).

5.1.2. Pharmacophore Model Validation

Structure-based pharmacophore modeling can be employed efficiently when there is inadequate information on ligands

that have been empirically proven to inhibit or stimulate the activity of a certain therapeutic target . Validation is

required to obtain an accurate pharmacophore analysis and to analyze the molecular model’s quality. Pharmacophore

methods focused on appropriate correlation coefficients (R) might be validated in three main steps: Fisher’s randomization

test, test set prediction, and Guner–Henry (GH) scoring technique.

Fisher’s Randomization Test

Fisher’s randomization approach is critical for establishing a link between structural and biological functionality in training

set molecules . The relevant experimental data linked with the training dataset are randomly changed to make them

statistically irrelevant. The randomized dataset is then used to construct assumptions using the same characteristics and

variables that were used to develop the original hypothesis. This randomization approach validated the drug-tested

pharmacophore hypothesis by selecting 95% confidence levels, which resulted in 19 random spreadsheets. The

randomized dataset should give equivalent or higher cost values, improved RMSD, and significant correlations for

successful pharmacophore development.

Test Set Prediction

The goal of the pharmacophore method is to anticipate not only the behavior of molecules in the training dataset, but also

the activity of external molecules. The correlation value between the experimental and forecasted behavior of external

molecules that were excluded from the training dataset was predicted using test set prediction. This metric determines the

predictability of pharmacophores’ stability (free of errors). In this technique, the behavior of the test set components has a

higher correlation coefficient, which has a 95% confidence level .

5.2. Ligand-Based Drug Design

Ligand-based drug design is considered an indirect technique because the structure of the biomolecular target is unknown

and cannot be anticipated using approaches such as homology modeling . The most significant and highly used

methods in ligand-based drug discovery are 3D quantitative structure–activity relationships (3D QSARs) and

pharmacophore modeling, both of which can supply vital knowledge regarding the nature of connections between drug

targets and ligand compounds as well as computer simulations suitable for lead compound optimization . The most

crucial aspects of the interaction nature are preserved, but the noise of extra information is eliminated.

5.2.1. Quantitative Structure–Activity Relationship (QSAR) Models

Structure–activity analysis relationship models depict the overall mathematical relationship between a collection of

chemicals’ structural properties and target response . The QSAR model has been successfully employed to decrease

the need for time-consuming, arduous, and expensive processes in innovative drug development during the last few

decades, and it also performed well in terms of predicting physiochemical properties (Table 2). Regression techniques,

artificial neural networks, principal component analysis (PCA), and partial least squares (PLS) can be used to determine

these correlations. Multiple linear regression is a frequently used approach for establishing a link between active and

multiple structural features. When a high number of structural features must be taken into account (for example, grid-

based approaches in 3D QSAR), linear regression fails and a specialized method such as PCA or PLS is needed. The

idea of multidimensional QSAR has been proposed in recent years . Predicting the biological properties of chemical

substances is more beneficial. HQSAR, G-QSAR, MIA-QSAR, and multitarget QSAR are all part of this process, which

has had outstanding success in the new drug process. The two most essential methodologies suggested for developing

pharmacological compounds are comparative molecular field analysis (CoMFA) and comparative molecular similarity

indices analysis (CoMSIA). However, QSAR modeling has some limitations; for example, if the number of molecules in the

training set is small, the data may not accurately reflect all of the properties, and therefore it cannot be used to forecast

the most active compounds.

Table 2. A list of techniques and mathematical equations used in QSAR modeling as well as drug design.

No Techniques Equation Activity Reference

1. K-nearest neighbor Linear Simple
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No Techniques Equation Activity Reference

2. Multiple linear regression Linear Simple

3. Partial least squares Linear Performs effectively on data including a big dataset

4. Artificial neural network Nonlinear Works well with nonlinear data

5. Support vector machine Nonlinear A most effective approach for classification and regression

6. Decision tree Nonlinear Extremely interpretable

7. Random forest Nonlinear A better and more reliable estimate
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