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Laser scanning technology has long been the preferred method for capturing interior scenes in various industries. With a

growing market, smaller and more affordable scanners have emerged, offering end products with sufficient accuracy.

While not on par with professional scanners, Apple has made laser scanning technology accessible to users with the

introduction of the new iPhone Pro models, democratizing 3D scanning.
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1. Introduction

Over the past decades, laser scanning has emerged as a cutting-edge technology. Laser scanners generate point clouds

that are highly effective in representing objects of varying complexity at different scales . In the 1990s, terrestrial laser

scanners (TLS) were introduced to the surveying industry , and towards the 2010s, they became more accurate and

capable of scanning ranges of hundreds of meters. TLSs are widely used in a variety of applications, including cultural

heritage , change detection , monitoring and deformation , as-built modelling , and forestry . In the late

2000s, mobile mapping systems (MMS), which operate on a vehicle such as a car, were introduced into mapping

operations, mainly for data capture on road infrastructure and building facades  and extended its use to various

applications .

These systems utilize active or passive sensing to capture the object of interest, along with GNSS and IMU for accurate

georeferencing. While the GNSS and IMU combination works well for outdoor applications, in GNSS-denied spaces like

indoors, using only inertial sensors leads to an increasing drift rate, one which cannot be corrected due to the unknown

function with respect to time . Simultaneous localization and mapping (SLAM) is one of the techniques that offers a

solution to this problem. Its fundamental concept is monitoring the sensor’s position and orientation (pose) over time in 3

degrees of freedom (DoF) and with relative coordinates, respectively. This is achieved by utilizing overlaps in optical data,

such as with previously observed features .

Nowadays, numerous low-cost MMS rely on SLAM and can be utilized through various platforms like trolleys, backpacks,

and hand-held devices. Although many of these systems have been initialized for entertainment, some have led to

research work developments for further applications. In addition to mobile laser scanner solutions, depth cameras

represent another commonly employed low-cost alternative in 3D documentation. The integration of RGB and depth

cameras generates a 3D representation of the scene by capturing the distance between the object and the camera within

their field of view (FOV) and is frequently utilized in computer vision . Two common approaches for depth cameras are

time-of-flight (ToF) and structured light. ToF cameras, exemplified by devices like Azure Kinect and HoloLens, emit light

pulses and capture the reflected signal to calculate the distance based on the measured time for the light to travel to an

object and back. Numerous studies have incorporated both systems in indoor mapping . Structured light-based

cameras project a known light pattern onto the scene and calculate depth information based on the distortion of the

pattern on the analyzed object surface. Early generations of Kinect serve as a well-known example of this type of camera

and have been utilized in various studies to investigate their capabilities in indoor mapping .

The developments in laser scanning technology and the rapid advancement in low-cost sensor technology have made 3D

laser scanning more accessible and cost-effective. Over the years, researchers have investigated comparative evaluation

of the lidar-based indoor MSS, such as . Even consumer technology, like some iPhone models, now

incorporates laser scanning technology, opening possibilities for the democratization of 3D scanning. 
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Using smartphones to obtain spatial information is not a new concept, as smartphones are equipped with inertial sensors

that are commonly used in indoor positioning, such as in , and cameras that are used in 3D reconstruction based on

images or videos . Most earlier studies intensively worked with the Google Tango technology, which was launched in

2014  and aimed to evaluate the dependability, influence, and engagement of users in a hardware and software bundle

that permits the development of augmented/mixed/virtual reality content exclusively through the use of their smartphones

or tablets . The Tango project was only available on a limited number of compatible phones and tablets. In 2018, the

project was terminated and replaced with ARCore . Some studies include , both of which tested the Tango tablet’s

capability for 3D documentation of indoor spaces. Other examples are , which investigated 3D reconstruction using a

Tango smartphone in the context of cultural heritage, and , which assessed the quality and potential of the system in

their study.

Apple introduced lidar sensors into its pro lines of tablets and smartphones, iPad Pro and iPhone 12 Pro, in 2020. This

brought a novelty to the 3D scanning subject by incorporating a lidar sensor into user-grade smartphones, leading to the

question of whether these devices would be a low-cost alternative with enough accuracy in 3D scanning. Apple’s aim was

more to improve the camera and enhance the augmented reality experience for its users. Hence, Apple has not released

any 3D scanning applications for large spaces or objects after the initial release, apart from the Measure app, which is

designed as a measuring tool. However, Apple has provided a software development kit (SDK); since then, many

developers have developed 3D scanning apps with ARKit by Apple. As it seems to be compatible with novice users who

seek to generate a floor plan to design their houses or to try furniture before buying, more applications that target

scanning experts have been released over time. It has also received attention from researchers as a low-cost and over-

the-shelf alternative for 3D documentation. Different subjects have been investigated since the release of the first Apple

device equipped with the lidar sensor.  evaluated the iPhone 12 Pro for its use in geoscience applications. The

former reports a 10 cm sensor accuracy when demonstrating its use on a coastal cliff, while the latter concludes that the

tested iPhone 12 Pro device would be the standard process for capturing rocky slopes and investigating discontinuities,

despite limitations in its range.  assessed the Apple lidar devices for their use in heritage documentation and

concluded that this technology holds great promise for the near future.  investigated these devices for indoor/outdoor

modelling and reported 53 cm for local precision and 10 cm for global correctness. The indoor test space consisted of two

adjacent rooms that covered a total of around 200 m .  evaluated the iPad Pro from the architectural surveying

perspective and reported 2 cm precision and 4 cm accuracy for a 1:200 map scale.
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