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Nanostructures have played a key role in the development of different techniques to attack severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). Some applications include masks, vaccines, and biosensors.

The latter are of great interest for detecting diseases since some of their features allowed us to find specific

markers in secretion samples such as saliva, blood, and even tears.

SARS-CoV-2  hierarchical nanostructures  nanoparticles

1. Introduction

Sensors based on hierarchical nanostructures in the area of nanomedicine have been meticulously investigated in

order to identify different enzymes and organisms such as bacteria or viruses. Biosensors are fascinating

instruments that basically serve to detect biological or chemical parameters such as those related to molecules in

tissues, microorganism cultures, and nucleic or acid chains . The characteristics related to biodetection like

selectivity, response speed, and stability depend on the morphology and structure of the sensing materials .

The main types of sensors used in biodetection are electrochemical , thermometric , piezoelectric , magnetic

, and optical sensors (plasmonic , UV-Vis/infrared spectroscopy , Raman and SERS , or attenuated total

reflection ). Biosensors that are developed using hierarchical nanostructures can be manufactured with different

nanomaterials. For example, nanohybrids can be integrated into diverse materials such as noble metals ,

graphene , copper, titanium , zinc oxide , and bimetallic oxide , among others. The biosensors can be

classified into three groups according to their mechanisms: the biocatalytic group that uses enzymes, bioaffinity

group that involves antibodies and nucleic acids, and microorganism group that uses microbes .

A strong selective control of the manufacturing parameters of noble metals is possible , allowing their structure

to be modified  to improve their physicochemical properties and adjust their shape . There are multiple

techniques for designing nanobiosensors, but the most common ones are based on electrochemical deposition ,

electroless deposition , electrocatalysts , and physicochemical methods .

Besides different processing routes that have been extensively explored to improve biosensing effects, the use of

the LSPR phenomenon is very attractive , and the development of hierarchical nanostructured biosensors can

promote exceptional optical, electrical, and chemical properties based on LSPR. Some of the special

characteristics exhibited by hierarchical nanostructures are derived from their ultra-high specific surface area, high

flexibility, light weight, high electrical conductivity, and bio-compatibility .
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The hierarchical nanostructures are replacing conventional random hybrids in counterparts thanks to their physical

characteristics, stability, and efficient transfer of electronic and ionic charges . For example, their

morphologies show a high surface area with adjustable porosity or packing density. Some hierarchical assemblies

serve as programmable scaffolds that provide molecule-level control over the distribution of fluorophores and

nanometer-scale control over their distance. Several strategies can be used to study imperfections and to stabilize

various types of nanostructures, such as hollow ones  or cage frames to obtain a better performance .

It is worth noting that hierarchical metamaterials have been reported for the development of virus-based light

learning systems, in plasmonic structures for application in high-performance metamaterials, and in binary

nanoparticle networks and liquid crystal arrays for sensing technologies and imaging . With these procedures,

diverse techniques have been demonstrated strong fluorescence intensity and mild levels of enhancement, which

allows them to manipulate photonic excitation and photoemission .

Hierarchical nanostructures represent a potential key to the next generation of new nanomaterials. For example, a

controlled structure in the agglomeration between nanoparticles can increase plasmonic effects while the stacking

distance between other nanoparticles decreases; all of this can be used to develop new and effective detection

methods. Some of the representative hierarchically structured shapes are nanopillars , nanocones ,

nanoholes , and gecko pillars , among others.

Hierarchical nanostructures can be fabricated using techniques such as nanosphere lithography  with multiple

patterns , electron beam lithography , pattern transfer , and focused ionization .

The characterization of the morphology, structure, and stability of hierarchical nanostructures can be explored by

different methods. The typical characterization techniques for hierarchical nanostructures are X-ray diffraction ,

electrical effects , TEM , energy dispersive spectroscopy (EDX) , AFM , optical interactions , PL ,

Brunauer–Emmett–Teller surface area analysis , UV–visible absorption spectroscopy , photovoltaic

performance , photocatalytic processes , Raman spectroscopy , and magnetic phenomena .

A hierarchy in nanostructures can be developed through in situ plasmon-driven syntheses  or through amino

acids  to easily detect analytes at trace levels, such as pesticides, heavy metals, explosives, proteins,

pathogens, and other chemical and biological contaminants . It is clear that nanomaterial sciences are essential

for developing biosensors with high reliability and speed using innovative technology .

In the last two years, diverse experiments have been carried out in the development of biosensors using different

hierarchical nanostructures. It is worth highlighting some examples that have been very useful in the commitment

to developing biosensors with better properties.

It has been pointed out that biosensors can be used to see the effectiveness of the vaccines in healthy,

convalescent, or vaccinated people . They can be used to monitor diseases, observe how many antibodies exist

in people’s fluids, as well as determine whether the vaccines are effective for the test subjects . In the faster
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biosensors, it takes approximately 20 min to obtain the result. The research has sought to develop biosensors with

these nanomaterials to achieve a relatively rapid response, achieving a response time of 15 min.

It has been observed that current biosensors also have some disadvantages such as not being capable of

detecting analytes in samples when there are external stimuli. This has to be addressed with the development of

different biosensors with the properties of nanomaterials, such as different probes, including plasmonic  and

incorporated ones . Biosensors capable of detecting pathogens with very little genetic material compared to

other assays have also been developed . Additionally, calorimetric strips for smartphones aimed at antibodies or

antigens to combat the rapid spread of these diseases have been considered since wearable biosensors can

constantly monitor patients .

With this motivation, different aspects of the cutting-edge biosensors in the detection of SARS-CoV-2, focusing in

those based on hierarchical and hybrid nanoparticles. Figure 1 shows the main characteristics.

Figure 1. Representative characteristics exhibited by different nanostructures in biosensing applications.

2. Synthesis of Hierarchical Nanostructures and
Multicomponent Assemblies for Biosensors

Materials with hierarchical nanostructures have excellent mechanical properties due to the functional adaptation of

their structures into different hierarchical levels. Hierarchical structures can be observed in nature, such as in

bones, wood, cork, and plant stems, or in glass sponges . Hierarchical nanomaterials show different

architectural designs that are ordered at multiple length scales. They are grouped according to their main

characteristics; in the case of porous materials, they contain interconnected pores with at least two levels of pore

hierarchy from molecular (1–100 A), nano (10–100 nm), and meso (1–100 μm), to macropores . It should be

noted that the construction of hierarchical nanostructures requires knowledge of particular principles to avoid

limitations on their properties . Hierarchical materials can mimic the mechanical properties of their biological

counterparts. Smart hierarchical materials can exhibit specific stimulus-response properties , such as self-
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healing and self-regeneration  in order to improve fracture resistance and increase strength . Arrays can be

constructed using proteins and microscale mechanical constraints can be used to form ordered networks within

macroscopic structures . The synthesis at different orders of magnitude from nanoscale to macroscale can be

used to acquire outstanding characteristics through interacting with different analytes of different sizes , from

small proteins to living cells. Different networks can be designed according to the geometry of the templates used

. The nanoclusters can be protected by ligands that can be prepared with atomic precision, exhibiting well-

defined structures and resulting in versatile building blocks to manufacture excellent structures capable of

performing certain functions . For instance, nanofibers are used to construct multifunctional walkways with up to

five levels of organization (depending on the method used). In the first level, there is a composite nanofiber; in the

second level, a layer of composite material coated on the composite nanofiber that will result in the third level. The

fourth level organizes the nanofibers to form an assembly and finally, in the last level, an assembly of nanofibers

can be encapsulated within a matrix to form a massive structure by default . Nanotubes are commonly used for

the manufacture of hierarchical materials since they consist of molecular blocks, whose characteristics can be

related to an anisotropic supramolecular self-assembly behavior at a personalized nanoscale, which allows for the

creation of a percolation network at the mesoscale. They are regulated by dynamic self-assembly into four

hierarchical levels of self-organization . Nanosheets are composed of 2D building blocks, which have atomic or

molecular thicknesses and they are considered the thinnest functional nanomaterials. They can be organized into

various nanostructures or combined with a variety of materials at the nanoscale. Thanks to this, wide-range

assemblies such as organic molecules, polymer gels, and inorganic nanoparticles can be designed .

Although hierarchical nanomaterials can be considered hybrid materials , nanohybrids are composed in a

different way. Hybrid materials can have a variety of complex architectures with or without hierarchy. Their size

varies from nanometers to several micrometers and several millimeters. Hybrid nanomaterials are combined

through the synergistic mixture of two or more nanomaterials, which can be either inorganic or organic , that

create a single material with properties that go beyond their properties as individual elements. They consist of

groups of blocks with similar properties and structures with groups that cross-link the polymer into chains . Their

properties are determined by a combination of structure and composition at each length scale . As a result, their

properties are expressed in molecular length scale structures . This indicates that the new mixture has superior

properties compared to the original mixture. The properties to look at are the advantages derived from

nanomaterials at a macroscopic level, such as energy absorption performance. The lightweight structure

maximizes its functionality and improves the efficiency of the material .

There are different forms of nanohybrids such as sandwich structures, foams, reticular structures, segmented

structures, zero expansion , and meso-structured thin films . These structures serve different purposes,

especially in integrated refractive and diffractive optical devices. Since these nanomaterials have a large thermal

stability and better compatibility, they are typically used in the production of semiconductive devices . In order to

characterize organic–inorganic materials, techniques such as FTIR, Raman spectroscopy, LSPR, and various

techniques based on MS are used .
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Hybrid nanomaterials are good candidates for developing nanomaterials in the fight against bacteria and viruses

thanks to their high sensitivity, good stability, and selectivity. In particular, they can detect antigens in plasma since

their good electrochemical activity helps in the immobilization of the chains of different aptamers .

Nanomedicine, based on hybrid and hierarchical nanomaterials, has achieved great progress in the field of

biosensors for the diagnosis, prevention, detection , and treatment of diseases in the post-pandemic period .

Compared to bulk materials, nanostructures are more precise, more reliable, less invasive, and easier to carry

according to their chemical elements . The effectiveness of nanomaterials has advanced to detect diseases at a

very early stage using new technologies based on nanobiosensors , whose physical principles at the nanoscale

level allow the biological receptors to be highly sensitive . Nanobiosensors can be tailored by using different

types of nanomaterials and structures .

Depending on their interactions, nanobiosensors can be classified into two different groups called biocatalytic or

biophilic. These two groups can be classified according to recognition factors, for example, cells, organelles,

tissues, enzymes, receptors, antibodies, nucleic acids, MIPs, PNAs, or aptamers.

Nanostructures are capable of obtaining information through molecular interactions in real time, and in normal and

pathological biological states which provides an effective and relatively fast result. For example, in a drop of blood,

an enzyme such as glucose oxidase, glucose dehydrogenase, or hexokinase can cause a reaction, which can be

measure by a low-dimensional detector in a glucometer (biosensor) .

Because the manufacturing of biosensors has several drawbacks, efforts have been made to develop

improvements in manufacturing . Characteristics like adhesion ability, strong adsorption

capacity, chemical catalytic efficiency, and corrosion and oxidation resistance facilitate the fabrication ,

chemical stability, and electron transfer kinetics . The challenges for optimizing highly selectivity binding

properties are continuously being overcome to analyze nanoscale elements of biomolecules .

High crystallinity with insignificant structural defects can be relevant to detecting different samples such as glucose,

proteins, and nucleic acids . The other main advantages of nanohybrid materials are the specific binding sites

that generate a selective sensor signal, which also improves its magnitude and composition. The high surface-to-

volume ratio of nanofibers can also improve the capture efficiency and it provides some surface area-related

phenomena, including ion exchange and catalysis .

Heterounions in hierarchical nanomaterials can promote the selective formation of specialized structures and

sensitive responses not found in other sensors . Nanomaterials produced through molecular printing

can create selectivity for specific enzymes. This method can be worked with 3D nanostructures and it is used to

manufacture versatile materials for the construction of sensors to detect various analytes . It has been

demonstrated that these nanostructures can eliminate pathogens and better detect enzymes compared to other

nanomaterials .
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The existing improvements found when assembling nanostructures are versatile, and they open new methods for

different technologies to control their structure and combine physicochemical properties 

. On the other hand, some nanostructured systems based on organic polymers have been proposed

, and applications for spectrochemical biosensing have been demonstrated. Biosensors based on RNA

hybridization can be considered for several biological reactions and for generating analytical signals that are easily

detected by different electrochemical aptasensors , electrochemical luminescence sensors , and optical

transducers, among others . It has been pointed out that RT-PCR  can be used to amplify cDNA from virus

RNA . This is of great interest in the studies that have to do with inhibitors that target the enzyme helicase since

it is known to participate in the processes of duplication and cell reproduction .

Photonic nanobiosensors have been also highlighted with respect to their potential use against SARS-CoV-2. In

addition to monoclonal antibody pairs, which are rapid antigen tests , it is important to look for more efficient

ways to detect pathogens . In this direction, biosensors using some promising plasmonic nanoparticles are the

most powerful tools employed for the detection of viruses . Moreover, polystyrene nanoparticles, graphene, and

carbon nanotubes  present different advantages such as selectivity towards particular molecular expressions

corresponding to an important challenge that requires high specificity, sensitivity, and a multiplex detection

capability to offer good virus detection. The design of POC testing arrangements , such as LFIAs, should be

mentioned as they offer fast and easy-to-use methods, as well as reliability. Each synthesis procedure can be

functional, but inherent limitations in the quantitative analysis of the virus in the application of biosensors should be

noted .

In summary, hierarchical nanostructures are formed by hybrid nanoparticles, which are good candidates for the

development of nanobiosensors for pathogen detection. These nanoparticles are prepared through different

synthesis methods, as it is illustrated in Figure 2.
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Figure 2. Representative processing routes for the synthesis of hierarchical nanostructures used in the

development of biosensors.
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