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G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including
the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key
physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the
structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular

binding partners such as G proteins and arrestins.

G protein-coupled receptors 19F-NMR membrane mimetics stable-isotope labeling

1. 1%F-Nuclear Magnetic Resonance (NMR) with Observation
of Extrinsic Probes Attached to G Protein-coupled Receptor
(GPCR)

19F-.NMR has long been used for studies of complex biological systems, since °F has no natural background
signals and displays high sensitivity toward changes in its microenvironment. As fluorine is not a natural component
of proteins, it is essential to develop ever-improved methods to incorporate fluorine probes into GPCRs, either

during expression or by post-translational chemical modification (Figure 1) [L2BIA4I5],
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Figure 1. Overview of the methods in use for incorporation of °F-NMR labels into GPCRs. (A) Biosynthetic
incorporation by adding fluorinated amino acids, such as 5F-Trp, to the expression system; all Trp residues in the
protein are then labeled with 1°F. (B) Post-translational chemical modification by reacting the GPCR with thiol-
reactive fluorinated tags; all reagent-accessible Cys residues are then labeled with the fluorinated tag. (C) Genetic
labeling using an extrinsic orthogonal tRNA/aminoacyl-tRNA synthetase pair to incorporate non-proteinogenic 1°F-

labeled amino acids at positions defined by a TAG amber codon.

In biosynthetic incorporation, all residues of one amino acid type can be replaced by its fluorinated analogue,
providing “amino-acid-specific 1°F-labeling” (Figure 1A). Fluorinated amino acids are fed to the expression host by
including a high concentration of the fluorinated amino acid in the growth medium (Figure 1A) BT This
approach may be limited by the fact that high concentrations of 1°F-containing amino acids can inhibit cell growth
8, Induction of the amino acid auxotrophy in nonauxotrophic bacterial strains by shutting down selected amino-
acid-specific biosynthesis pathways with specific inhibitors has also been used for 1°F-labeling B2, Tryptophan
residues are highly present at the hydrophobic interfaces of protein—protein complexes, which makes

fluorotryptophan attractive for NMR studies of membrane proteins 112 The use of fluorinated indole as a
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fluorotryptophan precursor has been described as an inexpensive alternative for obtaining tryptophan-specific
labeling &l

Fluorine has been widely incorporated into proteins by post-translational chemical modification (Figure 1B). The
most commonly employed method is cysteine-labeling, making use of the high nucleophilicity of the side chain
sulfhydryl group [, Labels with CF3 groups are attractive because they yield strong signals that are not subject to
large chemical shift anisotropy relaxation B!, Examples are 3-bromo-1,1,1-trifluoroacetone (BTFA) 13l and 2-bromo-
4-(trifluoromethyl)acetanilide (BTFMA), which react with the sulfhydryl group in a single step 4], The conjugation of
2,2,2-trifluoroethanethiol (TET) to membrane proteins starts with sulfhydryl group activation by 4,4-dithiodipyridine
(4-DPS), and a disulfide bond is formed in a second step BILAUEIATIILE post-translational chemical modification
can be applied to otherwise unlabeled proteins and regardless of the expression system used; high expression
yields can thus be obtained, which is especially useful for GPCRs [BILSIIEIL7I18II9 \When using amino-acid-
specific labeling, further sequence-specific assignments of 19F-resonances have been obtained by site-specific
mutagenesis. For cysteine-rich GPCRs, individual assignments can therefore be very demanding. In 2015, SuSac
et al. 17 reported the in-membrane chemical modification (IMCM) method, which makes use of the natural
protection of most cysteines in the transmembrane helices by the membrane environment. Selective cysteine

labeling on the receptor surface with minimal or no mutagenesis can thus be achieved.

The introduction of multiple 1°F-labels within the same protein has been used to check on intramolecular distances

related to the three-dimensional molecular structure [2921],

In a genetic engineering approach, the site-specific incorporation of fluorinated amino acids is accomplished
through using an orthogonal amber suppressor tRNA with a paired tRNA synthetase to insert the non-proteinogenic
amino acid at positions defined by a TAG amber codon (Figure 1C) . Fluorinated phenylalanine 221231241 gnd
tyrosine (22 derivatives have been incorporated into proteins using this approach. Genetic labeling can be highly
precise, but in improperly optimized expression systems, it may provide low yields of both the expression and
incorporation of the fluorinated-amino acid 28, Wang et al. 24l reported the genetic labeling of the cannabinoid
receptor 1 (CB1) with the non-proteinogenic amino acid 3’-trifluoromenthyl-phenylalanine (mtfF) in the baculovirus
expression system; this approach enabled studies of conformational transformations under the influence of ligands

with variable efficacies [24],

| 2. NMR in Solution of GPCRs Using Stable-Isotope Labeling

Three different stable-isotope labeling strategies have primarily been used for studies of GPCRs: post-translational
chemical labeling with 13C-labeled methyl groups, amino-acid-type selective labeling and uniform labeling. Post-
translational chemical labeling of the reactive side chains of surface-accessible cysteine or lysine residues has
been used in many NMR studies of GPCRs. 13C-isotope-labeled methyl probes can be chemically attached to the
y-SH moiety of cysteine side chains or the £-NH, groups of lysine side chains. 3C-formaldehyde has been used to
label solvent-exposed lysines, vyielding 13C-dimethyllysines as NMR probes [27[28129]  13C_methyl

methanethiosulfonate (13C-MMTS) has been used to label solvent-exposed cysteines of GPCRs Y. Unlike
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trifluoromethyl probes, which are usually attached to a single judiciously selected surface-accessible cysteine to
avoid signal interference from other labeled residues [BIB1I32I33134] 13C_|abeled methyl probes have often been
used to label all surface-accessible (endogenous as well as non-endogenous) cysteines or lysines, and 2D 1H-13C

correlation spectra were recorded to resolve multiple signals 22!,

Limitations arise because the choice of stable-isotope probes for the chemical modification of amino acids side
chains may influence the dynamics of GPCRs 31, On principal grounds, post-translational chemical labeling
normally only targets surface-accessible residues of GPCRs. In contrast, amino-acid-selective isotope labeling also
targets the transmembrane region of the receptor. Examples of amino-acid-type selective isotope labeling include
the use of [5;-13CHg]-isoleucine 81371 [¢-13CH]-methionine [221[20I[36][38][39][401[41][42][43][44][45][46] [15N]-valine 4748l
and [1°N]-leucine “2. An increased sensitivity was achieved by deuterating the a- and B- positions of methionine
and leucine, using [2,3,3-2H, methyl-13C]-methionine [B8I[3A141I42] and [2,3,3-2H, 1°N]-leucine “9 in the nutrient.

Uniform 15N-labeling of GPCRs has been achieved in E. coli for the rat neurotensin receptor 1 B9 and in Pichia
pastoris for A,pAR BLUB2IES] gnd the histamine H; receptor B4l the minimal medium contained [Y°N]-ammonium
sulfate or [Y°N]-ammonium chloride as the only nitrogen sources. Since deuteration is mandatory for transverse
relaxation-optimized spectroscopy (TROSY) studies of large macromolecular systems B2 it is essential that the
expression systems used can produce partially or fully deuterated recombinant proteins. Uniform 2H, 1°N-labeling
was also achieved by expression of the B;-adrenergic receptor in Sf9 insect cells; the addition of 2H, 1°N-labeled
yeast extract to the insect cell medium allowed deuteration levels of >60% 28, Eddy et al. BUB2I53] expressed
uniformly 2H, °N-labeled A,,AR with D,O-adapted Pichia pastoris in D,O growth media. All six tryptophan indole
15N-1H signals and eight of the eighteen glycine backbone °N-'H NMR signals were resolved in the 2D [*°N, 1H]-
TROSY spectrum of A,pAR, and sequence-specific NMR assignments were obtained by single-residue amino acid
replacements 1. Drug-dependent local conformational changes in A,sAR could thus be observed, as illustrated
for the toggle switch Trp246648 Bl |n addition to the natural tryptophans, extrinsic tryptophan residues were
introduced into judiciously selected sites of the receptor by genetic engineering; these were then used as

supplementary NMR probes for monitoring conformational changes of A,,AR 22531,

Overall, in contrast to “probe methods”, uniform labeling can provide global information on a receptor.

3. GPCR-Ligand Interactions Studied by NMR Observation of
the Ligand

NMR observation of bound and free ligands can provide unique insights into the biophysical properties and
biological functions of GPCRs. Specifically, in addition to providing data on the influence of bound ligands on
GPCR, NMR spectroscopy is uniquely powerful in detecting weak binding BAEEI5A. Measurements of the chemical
shifts, line widths, and relaxation times of free and bound ligands are all informative on ligand binding events.

Depending on the time scale of the GPCR-ligand interactions, different approaches are used 9,
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For studies of weak binding with a rapid ligand exchange, a large arsenal of experiments based on observation of

the modulation of the NMR signal of the free ligand through exchange with the bound ligand is available [61162][63]

(641 Among these, the transfer NOE (trNOE) stands out by the fact that information on the structure of the bound

ligand can be obtained. For example, in studies of the peptide ligand dynorphin interacting with the kappa opioid

receptor (KOR) 82, 1H and 15N chemical shift variations for the free ligand indicated that the free peptide is in fast

exchange with the bound peptide. The receptor—peptide interaction was within the range that allowed the

determination of a conformation of the KOR-bound dynorphin via the trNOE method.
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