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Brain metastases are the most common of all intracranial tumors and a major cause of death in patients with cancer.

Cytokines, including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors are key regulators in

the formation of brain metastases. They regulate the infiltration of different cellular subsets into the tumor

microenvironment and affect the thera-peutic outcomes in patients.
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1. Introduction

Cytokines and chemokines are soluble signals that control the migration and positioning of cells in a specific

microenvironment . They are released by immune cells, endothelial cells, fibroblasts, and other stromal cells, and act by

binding to cell surface receptors on effector cells. The immune system is particularly dependent on cytokines and

chemokines for coordinated function and response to pathogens, thus favoring the proper conditions for an optimal

adaptive immune response . Cytokine release is usually triggered by growth factors, foreign stimuli, and/or other

cytokines. In cancer metastases, the release of cytokines and chemokines activate cellular signaling pathways that

support the invasion of cancer cells at the primary tumor site, interactions of cells with the extra cellular matrix (ECM), and

the successful colonization of cancer cells in secondary organs . Preclinical studies on human cancers and mouse

models show that the interaction between cytokines and cancer cells increases metastases .

Brain metastases are the most common malignant brain tumors and a major cause of death in patients with cancer. They

require the invasion of primary cancer cells from the lungs, breast, or skin, trafficking through the circulatory system, and

the colonization of the brain parenchyma . Cytokines and chemokines secreted by brain metastatic cancer cells, stromal

cells, immune cells, and other cells within their surrounding microenvironment drive the various stages of metastasis .

They mediate the brain response to metastatic cells by directing the trafficking of leukocytes into the tumor

microenvironment. These proteins exert their effects either through autocrine or paracrine mechanisms to facilitate the

cross-talk between the metastatic cancer cells and their colonized niche. The migration of cells that express a specific

chemokine receptor occurs across a chemokine gradient that allows cells to move toward high local concentrations of

chemokines. This migratory response is complex and consists of diverse leukocyte subsets with both antitumor and pro-

tumorigenic activities . Preclinical reports show that chemokine-receptor antagonists can decrease the infiltration of

immune cells of myeloid origin and thus induce the arrest of metastatic growth and spread in the brain .

2. Cytokines in Lung Cancer Brain Metastases

Lung cancer frequently spreads to the brain. It is estimated that up to 40% of patients with non-small cell lung cancer

(NSCLC) will eventually develop brain metastases at some point during the course of their disease . Of patients with

brain metastases, lung cancer is the primary tumor in 40–50% of cases . Once brain metastases ensue, the

prognosis is poor, with life expectancy usually being under a year. Cytokine and chemokines have been reported to play

integral roles in the process of lung cancer brain metastases. They are involved in pre-conditioning the metastatic niche in

the brain for cancer growth and survival, interacting with resident cells in the tumor microenvironment of the brain, and

mediating the immune response to the metastatic lung cancer cells (Table 1).

Table 1. Cytokines reported to have a role in lung cancer brain metastases.

Cytokine Role Model Reference
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TGF-β1

Promote EMT In vitro

Damage the endothelial glycocalyx, which subsequently

improves the transmigration of metastasizing cells across the

blood-brain barrier (BBB)

In vitro

SMAD6 GG genotype of SMAD6 rs12913975 and TT genotype of

INHBC rs4760259 are associated with an increased risk of

brain metastases

Patient

samplesINHBC

PREP1
EMT inducer and is a pro-metastatic transcription factor that

acts by controlling the TGF-β-SMAD3 pathway

Patient

samples

CCL2 Induces visfatin upregulation In vitro

Visfatin
Mediates the transmigration of small-cell lung cancer (SCLC)

cells across the BBB
In vitro ]

TNF-α
Enhances the adhesion of metastasizing lung cancer cells to

the brain endothelial cells

Patient

samples

Cystatin C

Damages the endothelial membrane and improves the

transmigration of metastasizing cells across the BBB
In vitro

Cathepsin

L

IGFBP7
Improves the transmigration of metastasizing cells across the

BBB
In vitro

VEGF

CEMIP
Upregulates pro-inflammatory cytokines to promote brain

vascular remodeling

Patient

samples

MIF

Activate astrocytes in the tumor microenvironment and

increases the expression of IL-6 receptors
In vitroIL-8

PAI-1

IL-6

Promote tumor cell proliferation through the STAT3 pathway In vitro

Induces PD-L1 expression in myeloid cells
Patient

samples

CSF-1
Reprograms myeloid cells, specifically, into tumor-promoting

macrophages in the brain parenchyma
In vitro
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IL-2
Regulate the IFN-γ responses to the tumor surface antigen

mesothelin

Patient

samples
IL-7

Nitric oxide
Remodel the cytoskeleton and promote the mobility of lung

cancer cells

Patient

samples

RCAS

Induce apoptosis of NK/T cells and promote immune evasion
Patient

samples
FasL

HGF Enhance tumorigenicity and direct metastases to the brain In vitro

Pre-conditioning the brain microenvironment with specific cytokines, chemokines, or tumor–secreted exosomes enhances

lung cancer cell outgrowth in the brain. Transforming growth factor-β1 (TGF-β1) is well known for its role in epithelial to

mesenchymal transformation (EMT). Pre-treatment of lung cancer cells with TGF-β1 in mouse models leads cells to

metastasize almost 3 times more than wild types toward the brain. TGF-β1 genotype rs1982073 is associated with poor

brain metastasis-free survival in patients with NSCLC who underwent radiation therapy . Pending further validation, this

genotype can serve as a useful predictor of outcomes in this subset of patients. Genotype variants in the TGF-β signaling

pathway can also serve as predictive biomarkers of brain metastases. By analyzing DNA from blood samples, the GG

genotype of SMAD6 rs12913975 and TT genotype of INHBC rs4760259 were associated with an increased risk of brain

metastases in patients with NSCLC. Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (PREP1) is a ubiquitous

homeoprotein that functions as an EMT inducer and is a pro-metastatic transcription factor. PREP1 accumulation has

been detected in brain metastases of various solid tumors, including NSCLC. Further analysis showed that PREP1

promoted metastasis in the brain through controlling the TGF-β-SMAD3 pathway. CC chemokine ligand 2 (CCL2) induces

visfatin upregulation. Visfatin is a pro-inflammatory adipocytokine that mediates the transmigration of small-cell lung

cancer (SCLC) cells across the blood-brain barrier (BBB).

The colonization of the brain parenchyma by metastatic lung cancer cells involves the release of cytokines and factors

that facilitate the communication between the tumor cell and its microenvironment. Tumor necrosis factor-α (TNF-α)

enhances the adhesion of CD15, which is expressed at high levels in metastasizing lung cancer cells to the brain, and E-

selectin, which is expressed on brain endothelial cells. TNF-α, cystatin C, cathepsin L, insulin-like growth factor-binding

protein 7 (IGFBP7), and vascular endothelial growth factor (VEGF) are secreted by NSCLC cells metastasizing to the

brain [12]. These factors damage the endothelial glycocalyx, which subsequently leads to upregulation in E-selectin and

improved mediated adhesion of metastasizing cells to the brain microvascular endothelium. Even before the formation of

brain metastases, the cerebral metabolic status of patients with lung cancer is altered. Glutamate, creatine, and

phosphocreatine are significantly lower in the cortex of the patients . The concentration of TNF-α is inversely correlated

with the concentration of N-acetyl-aspartate, an indicator of mitochondrial oxidative capacity, in the occipital cortex .

Cell migration-inducing and hyaluronan-binding protein (CEMIP) is elevated in exosomes from brain metastatic cells.

Uptake of CEMIP+ exosomes by brain endothelial and microglial cells induces inflammation in the perivascular niche by

upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf, and Ccl/Cxcl, which are known to promote brain

vascular remodeling and metastases. Astrocytes in the tumor microenvironment are activated by tumor cell-derived

factors, such as the macrophage migration inhibitory factor (MIF), IL-8, and plasminogen activator inhibitor-1 (PAI-1).

Activated astrocytes, in turn, produce IL-6, TNF-α, and IL-1β, which promote tumor cell proliferation. The astrocyte-tumor

interaction increases the expression of receptors for IL-6 and its subunit gp130 and decreases the receptors for TNF-α

and IL-1β on HARA-B metastatic lung squamous carcinoma cells. Tumor-derived IL-6 is capable of inducing programmed

death-ligand 1 (PD-L1) expressing myeloid cells in vitro. The frequency of PD-L1+ myeloid cells correlates with the

presence of brain metastases. Patients with brain metastatic lung carcinoma demonstrated increased peripheral

monocyte PD-L1, MDSC abundance, and Treg percentage compared to controls. Adding brain-metastasis-conditioned

media to lung cancer cells increases monocyte PD-L1; IL-6 levels in conditioned media further correlated with PD-L1

induction. Treatment with anti-IL-6 or anti-IL-6 receptor antibodies reduces PD-L1 expression patient-derived xenografts,

which indicates that tumor-induced peripheral immunosuppression promotes brain metastases.
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Growth factors and cytokines in the tumor microenvironment play a role in the survival of metastatic cancer cells in the

brain. Upon rapamycin treatment, IL-1, IL-3, IL-6, TNF-α, TGF-β, PDGF, MCP-1, and MIP-1 expression were higher in

murine models of NSCLC brain metastases, but IGF-1 expression was lower compared to controls . Interestingly,

colony stimulating factor 1 (CSF-1) can reprogram myeloid cells, specifically into tumor-promoting macrophages in the

brain parenchyma.

Analyses of immunological markers could potentially serve as prognostic markers in patients with lung cancer brain

metastases. IL-2 and IL-7 can serve as independent predictors of survival in patients with brain metastases. IFN-γ

responses to mesothelin, a surface-bound antigen that is overexpressed in several malignancies, are conditioned by IL-2

and IL-7. CD37, cystatin A, and IL-23A are differentially downregulated in patients with lung cancer brain metastases .

The validation of these biomarkers could have implications on surveillance patterns in patients with brain metastases from

NSCLC . IL-17, released by Th17 helper T cells, is markedly increased in the serum and cerebrospinal fluid (CSF) of

patients with lung cancer brain metastases . The IL-6 receptor on tumor cells was upregulated during astrocyte-

mediated activation, which suggests that this receptor can be a therapeutic target to inhibit the growth of the metastasized

lung tumor cells in the brain . An isogeneic comparison of primary and metastatic lung cancer cells identified that the

downregulation of CX3CR1 in lung adenocarcinomas causes more metastatic spread to the brain . Intracranial

metastatic tissue samples of lung cancer show significantly higher expression of nitric oxide synthase, cytoskeleton

protein caldesmon, and OPN. Nitric oxide can remodel the cytoskeleton and promote the mobility of lung cancer cells. The

expression of chemokine CXCL12 and its receptor, CXCR4, is significantly higher in NSCLC samples of patients with

brain metastases , which allow for the differentiation between NSCLC patients without and with brain metastases, with

good diagnostic accuracy and adequate predictive power . Interestingly, the gene expression profiling of metastatic

lung adenocarcinoma in the brain shows an increased expression of the receptor-binding cancer antigen expressed on

SiSo cells (RCAS) and Fas ligand (FasL), which are present in neoplastic cells, induce apoptosis of NK/T cells, and play a

role in immune evasion. In addition, an immunohistochemistry analysis revealed a reduced expression of interleukin 13

receptor alpha2 (IL-13Ralpha2) in brain metastases compared to primary tumor cells. Moreover, Met receptor and its

ligand, hepatocyte growth factor (HGF), are commonly overexpressed in NSCLC. HGF/Met co-overexpressing cells

demonstrated enhanced tumorigenicity and higher spontaneous metastases to the brain.

3. Cytokines in Breast Cancer Brain Metastases

Breast cancer is the most frequent cancer among women, impacting 2.1 million women per year globally. It constitutes the

greatest number of cancer-related deaths in women and has one of the highest risks for intracranial spread . The

presence of specific cytokines and chemokines has been associated with the metastatic spread of breast cancer to the

brain (Table 2). Cytokines and chemokines can play a role in enhancing transmigration across the blood-brain barrier,

promoting immunosuppression in the tumor microenvironment, and facilitating the colonization of metastatic cells in the

brain parenchyma.

Table 2. Cytokines reported to have a role in breast cancer brain metastases.

Cytokine Role Model Reference

CXCL13
Increases the permeability of metastasizing breast cancer cells

across the blood-brain barrier (BBB)

Patient

samples
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CCL4

Facilitate the transmigration of breast cancer cells across the BBB

In vitro

CCL5

In vitro

In vivo (mouse)

ICAM-1 In vivo (mouse)

IL-6

IL-8

CCL2

Patient

samples

GRO-α In vivo (mouse)

G-CSF
Recruits Arg1+ and PD-L1+ immunosuppressive neutrophils into the

brain to drive metastasis outgrowth

Patient

samples

VEGF Drives angiogenesis and growth of brain metastases In vivo (mouse)

SDF1

Acts on microglia to support the invasion of breast cancer cells into

the brain

Patient

samples

Upregulates VEGF, MMP9, SLUG, E-cadherin, ATG5, LC3-II and

p62/SQSTM1 to promote tumor cell adaptation and progression in

the brain

Patient

samples

In vitro

MCP-1
Promotes migration and infiltration of macrophage into the brain

through its receptor CCR2

Patient

samples

GM-CSF

Facilitate the transmigration of breast cancer cells across the BBB
Patient

samples

Enhances microglial proliferation in the tumor microenvironment In vivo (rat)

CX3CL1

Attracts macrophages and microglial cells into the tumor

microenvironment
In vivo (mouse)

Stimulate brain microvessel endothelial cells, leading to increased

permeability of the BBB
In vitro

IFNα
Activate the STAT1 and NF-κB pathways in brain metastatic cells,

thereby promoting tumor growth and resistance

Patient

samples
TNF
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TGF-β1 Regulates breast cancer cell invasion and colonization in the brain In vitro

Fibronectin

1
Involved in tumor progression and invasion

Patient

samples

IGFBP7
Suppressed in breast cancer brain metastatic cells in the brain due

to its tumor suppressor properties
In vitro

CXCL10
Mediates recruitment of immune-suppressive CNS-myeloids to brain

metastases

Patient

samples

Cytokines and growth factors can alter the permeability of the blood-brain barrier. CX3CL1 and CXCL13 were found to be

elevated in the sera of patients with breast cancer brain metastases . Treatment of the endothelial cells that constitute the

BBB with the sera of patients with breast cancer selectively increases the expression of CXCL13 and the permeability

across the barrier using fluorescein. GRO-α, ICAM-1, IL-6, IL-8, GM-CSF, and CCL5 also facilitate the transmigration of

breast cancer cells across the BBB. The silencing of syndecan-1 increased the release of these cytokines by invading

cancer cells.

Metastatic breast cancer cells in the brain use cytokines to suppress the immune microenvironment and promote tumor

survival. Granulocyte colony-stimulating factor (G-CSF) recruits Arg1+ and PD-L1+ immunosuppressive neutrophils into

the brain to drive metastasis outgrowth. G-CSF secretion is regulated by the phosphorylation of the enhancer of zeste

homolog 2 (EZH2) at tyrosine-696 (pY696), which switches EZH2's function from a methyltransferase to a transcription

factor that increases c-JUN expression. c-Jun upregulates pro-tumorigenic inflammatory G-CSF. G-CSF-blocking

antibodies or immune checkpoint blockade therapies combined with Src inhibitors impeded the formation of brain

metastases in multiple mouse models. Rapidly progressing brain metastases contained many enlarged blood vessels.

The expression of VEGF by breast cancer cells directly correlated with angiogenesis and the growth of brain metastases.

C-X-C chemokine receptor 4 (CXCR4) and its ligand stroma-derived factor 1 (SDF1) are upregulated in various cancers,

and CXCR4 inhibition prevents metastasis formation . In breast cancer brain metastases, CXCR4 is upregulated in

microglia, which supports the invasion of breast cancer cells into the brain . Monocyte chemoattractant protein-1 (MCP-

1) is also implicated in breast cancer progression in the brain. A high level of MCP-1 in breast cancer cells was shown to

promote the migration and infiltration of the macrophage into the brain through its receptor CCR2. GM-CSF has a similar

effect as MCP-1 in enhancing microglial proliferation. Breast cancer brain metastases exhibit a high level of expression of

CX3CL1 , which functions as a chemoattractant for macrophages and microglial cells. These

microglia/macrophages release cytokines and chemokines, such as IL1-β and TNF-α, that stimulate brain microvessel

endothelial cells, leading to an increased permeability of the blood-brain barrier and immune cell infiltration from the

peripheral system. Osteopontin, through its receptors, CD44 and integrin α(V)β(3), plays a key role in macrophage

chemotaxis, a mechanism that may be utilized by metastatic brain tumors in the process of dissemination .

Astrocytes also produce SDF1, which upon binding to CXCR4 triggers a downstream signal transduction that induces the

production of miR345. miRNA345 silences the production of KISS1, which can lead to the upregulation of proangiogenic

VEGF, pro-invasive MMP9 and SLUG, EMT-related E-cadherin, autophagy-related ATG5, LC3-II, and p62/SQSTM1, to

ultimately promote tumor cell adaptation and propagation in the brain. Breast and lung cancer cells express protocadherin

7 (PCDH7), which assembles cancer cell-astrocyte gap junctions that are made up of connexin 43 (Cx43). Upon channel

formation, brain metastatic cancer cells transfer the second messenger cGAMP to astrocytes to activate the STING

pathway. This causes the release of inflammatory cytokines such as IFNα and TNF that activate the STAT1 and NF-κB

pathways in brain metastatic cells, thereby promoting tumor growth and resistance. Gene expression profiling using cDNA

microarrays in breast cancer brain metastases showed that the expression of astrocyte-derived cytokine receptors, such

as IL-6 receptor , TGF-beta receptor, and IGF receptor, were significantly increased, indicating that cytokines produced

by glial cells contribute to the metastatic process.

A proteomic analysis of the secretome in breast cancer brain metastases showed that several secreted proteins were

differentially altered when compared to patients without brain metastases. The pathway analysis shows that TGF-β1 is a

top upstream regulator in all metastatic breast cancer cells. Fibronectin 1, a protein involved in tumor progression  and
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invasion, is decreased in metastatic breast cancer cells to the brain as compared to other secondary sites, suggesting a

brain-specific phenotype. Insulin-like growth factor-binding protein 7 (IGFBP7), which has several characteristics of a

potential tumor suppressor, is also decreased in brain-specific metastases.

Immunogenic therapies that use anti-tumorigenic cytokines are being developed in breast cancer brain metastases. A

cellular vaccine consisting of allogeneic fibroblasts modified to secrete IL-2 significantly increased survival in animal

models. A histopathological examination revealed tumors associated with lymphocytic infiltrations .

4. Cytokines in Melanoma Brain Metastases

Melanoma has the highest propensity to metastasize to the brain compared to other cancers, resulting in significant

morbidity and death . Once disseminated in the brain, melanoma cells communicate with brain resident cells that

include astrocytes and microglia. This complex cross-talk between immune cells and brain metastatic melanoma cells

induces the production and secretion of cytokines and chemokines (Table 3).

Table 3. Cytokines reported to have a role in melanoma brain metastases.

Cytokine Role Model Reference

IL-17A Promotes angiogenesis and induces IL-6 production In vitro

CXCL10
Modulates the migration of monocytes, macrophages, T

cells, and NK cells to the brain
In vivo (mouse)

CCL17
Increases tumorigenicity and micrometastasis formation in

the brain
In vivo (mouse)

CCL2

Recruits cytotoxic T lymphocytes to the metastatic

melanoma site and induces an immune-mediated protective

role

In vitro

Recruits myeloid cells that prime the growth of metastatic

melanoma cells in the brain

Patient

samples

CCL22
Regulates the AKT phosphorylation pattern and subsequent

tumor cell survival and proliferation

Patient

samples

IL-6

Induces the production of GSH in melanoma cells,

facilitating their growth in the brain
In vivo (mouse)

Triggers MMP-2 enzymatic activity in the tumor

microenvironment
In vitro

IL-8

Increases melanoma cell migration, invasion, and adhesion

capacities, and activates MAPK signaling pathway
In vivo (mouse)

Induces VEGFA-mediated angiogenesis and vascular co-

option controlled by MMP-2 and MMP-9
In vivo (mouse)

TNF-α

IFN-γ

Enhances the invasion of metastatic melanoma cells and

increases tumor cell aggressiveness
In vitro
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VEGF

Eotaxin

RANTES

IL-12

Trigger MMP-2 enzymatic activity that enhances the

invasion of metastatic melanoma cells and increases tumor

cell colonization

In vitro

IL-33

Binds to ST2 receptor and induces melanoma proliferation,

migration, and invasion through MMP-2, MMP-9, and

ERK1/2 phosphorylation

Patient

samples

IL-1β

Induces VEGF production by endothelial cells, modulating

the inflammatory brain microenvironment of the tumor and

enhancing angiogenesis and tumor progression

In vivo (mouse)

IFN-α2β Inhibit lymphangiogenesis-mediated melanoma metastasis

by

decreasing VEGF-C and VEGF receptor-3 expression

In vivo (mouse)

IFN-β1α

IFN-α Enhances both innate and adaptive cytotoxic T-cell activities In vivo (mouse)

SOCS-1
Inhibits Stat3 signaling and downregulates MMP-2, bFGF,

and VEGF, leading to decreased invasion and angiogenesis

Patient

samples

IL-23
Upregulates MMP-2 to facilitate melanoma cell migration

and invasion into the brain parenchyma
In vivo (mouse)

TGF-β

Induces tolerance of melanoma cells against T cell

cytotoxicity
In vitro (mouse)

Plays a pivotal role in the spatial distribution of melanoma

cells in the brain parenchyma
In vivo (mouse)

The formation of melanoma metastases in the brain is preceded by early changes in the brain microenvironment that

include the breakdown of the BBB, vascular hyperpermeability, and reactive astrogliosis. Studies using a melanoma brain

metastasis immunocompetent mouse model revealed an upregulation in proinflammatory cytokines CXCL10, CCL17,

CCL2, IL6, and IL-1β . CXCL10 is secreted in response to IFN-γ by various cell types, including astrocytes, fibroblasts,

and endothelial cells, and was shown to modulate the migration of monocytes, macrophages, T cells, and natural killer

(NK) cells to the brain . Importantly, CXCL10 levels are elevated in advanced melanoma patients, and were associated

with poor clinical outcomes . In addition, CXCR3, the receptor for CXCL10, is upregulated in brain-tropic melanoma

cells. Interestingly, immunokine profiling studies in the cerebrospinal fluid (CSF) of advanced melanoma patients showed

that elevated levels of CXCL10, CCL17, and CCL4 may correlate with a more aggressive development of brain

metastases .

The chemokine motif receptor 4 (CCR4) and its ligands CCL17 and CCL22 are regulators of immune responses,

especially those mediated by regulatory T cells (Tregs) and TH2 cells . The expression of CCR4 was significantly

higher in paired clinical specimens of melanoma metastases than in samples of primary tumors from the same patients.

Their results demonstrated that CCL17 (but not CCL22) was sufficient to enhance melanoma cell invasiveness in the

brain, and blocking CCR4 in vivo using a CCR4-antagonist small molecule reduced the tumorigenicity and

micrometastasis formation of melanoma cells. CCL2, also known as MCP-1, has been reported to bind CCR4 on cytotoxic

T lymphocytes, resulting in their recruitment to the metastatic melanoma cells and inducing an immune-mediated

protective role. Moreover, the brain microenvironment induces a loss of PTEN expression in metastatic melanoma cells,

leading to an increased secretion of CCL2 and a subsequent recruitment of myeloid cells that enhance the outgrowth of
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brain metastatic melanoma cells via enhanced proliferation and reduced apoptosis. Another study using human

melanoma brain metastasis xenografts showed that metastatic melanoma cells stimulated with CCL22 showed a

differential AKT phosphorylation pattern, which is associated with tumor cell survival and proliferation . This hints at the

importance of the CCL22-CCR4 axis in the process of brain metastases in human melanoma.

The chemokine/receptor system CXCL12/CXCR4 plays a key role in multiple biological functions and is one of the most

investigated chemokine-receptor axes in the metastatic process. Indeed, CXCR4 expression might be a powerful

prognostic marker in malignant melanoma tumor cells  . In addition, other studies highlight the importance of CXCR7,

another CXCL12 receptor expressed mainly in endothelial cells, in priming the metastatic potential of melanoma cancer

cells .

Glutathione (GSH) is involved in cell protection against free radicals, and is particularly relevant in cancer cells by

regulating tumorigenic mechanisms such as DNA synthesis, cell proliferation, drug resistance, and cytokine production,

among others . Importantly, IL-6 in the highly metastatic B16 melanoma F10 (B16-F10) cell line induces the production

of GSH and its transport through the blood circulation to the brain metastatic growing foci, facilitating their growth in the

brain. The elevated expression of heparanase (HPSE) in melanoma cells has also been associated with increased cell

growth, angiogenesis, and metastasis to the brain . Interestingly, suppressing HPSE RNA expression has been shown

to reduce melanoma cell migration, invasion, and adhesion capacities by inhibiting the expressions of IL-8 and CXCL1, as

well as the activation of the MAPK signaling pathway. Additional studies demonstrate that the stress hormone

norepinephrine stimulates the growth and metastatic capacity of melanoma cells, in part by inducing the production of IL-

6, IL-8, and VEGF . Accordingly, IL-8 induced VEGFA angiogenic activity and increased the aggressiveness of

malignant melanoma cells. Nonetheless, the growth and invasion of melanoma cells into the brain parenchyma relied

primarily on the vascular co-option, controlled by the expression of the matrix metalloproteinases MMP-2 and MMP-9 .

Indeed, the brain metastatic melanoma-microglia interaction altered the secretion of vascularization-promoting factors

including angiopoietin-2 or IL-8 from melanoma cells, and of GDF15 (growth/differentiation factor 15, also known as

Macrophage inhibitory cytokine-1 or MIC-1) and other inflammation-related cytokines from microglia cells, favoring the

metastatic process . Previous works also indicated that metastatic melanoma cells secrete a large amount of

TNF-α, IL-6, IL-12, IFN-γ, VEGF, eotaxin, and RANTES, triggering a cascade of effects that include the increase of MMP-

2 enzymatic activity and tumor cell aggressiveness. Similarly, IL-33 affects the progression of malignant melanoma cells

by binding to its receptor ST2 and inducing tumor cell proliferation, migration, and invasion through MMP-2, MMP-9, and

ERK1/2 phosphorylation. IL-1β has also been shown to be upregulated in many solid tumors, including melanoma, and is

associated with angiogenesis, invasiveness, and poor patient survival . Mechanistically, this process is regulated

by the IL-1β-producing myeloid cells, which subsequently activate endothelial cells to produce proangiogenic factors like

VEGF, modulating the inflammatory brain microenvironment of the tumor and inducing an enhanced angiogenesis and

tumor progression. The efficacy of IFN-α2β and IFN-β1α in exerting an antitumor effect was shown against malignant

human melanoma xenograft models. Indeed, IFN-β1α showed a strong anti-proliferative and pro-apoptotic effect, whereas

IFN-α2β inhibited tumor growth metastases through the inhibition of lymphangiogenesis. Interestingly, both IFN-α2β and

IFN-β1α decreased in-vitro and in-vivo VEGF-C and VEGF receptor-3 expression.

STAT3 activity is higher in human brain metastatic cells than in primary melanoma cells, and its activation induces

angiogenesis, cell invasion, MMP-2 secretion, cytokine expression, and immune suppression, that contribute to their brain

metastatic potential . The inhibition of STAT3 signaling using the inhibitor WP1193 in brain metastatic melanoma

patient samples induced the antitumor activity of IFN-α by enhancing both innate and adaptive cytotoxic T-cell activities in

these cancer cells. In melanoma cell lines, the loss of the suppressor of cytokine signaling-1 (SOCS-1) expression

resulted in elevated STAT3 signaling and the overexpression of MMP-2, bFGF, and VEGF, leading to an enhanced

invasion and angiogenesis of melanoma cells, and consequently promoting melanoma brain metastases. The axis IL-17A-

STAT3 also plays a role in the interaction between melanoma cells and microglia. Indeed, IL-17A promotes angiogenesis

and induces IL-6 production in murine melanoma models, which in turn activates STAT3, upregulating the expression of

angiogenesis and survival-supporting genes . These results suggest that STAT3 activation may be, at least in part,

responsible for melanoma brain metastasis occurrence that has been previously observed in a study of 216 autopsied

metastatic melanoma specimens . Importantly, brain-metastasizing melanoma cells can reprogram astrocytes to

express the pro-inflammatory cytokine IL-23, which upregulates MMP-2 levels to facilitate melanoma cell migration and

invasion into the brain parenchyma. Thus, reduced expression levels of MMP-2 in melanoma cells resulted in the

inhibition of IL-23-induced invasiveness.

TGF-β plays a complex role during tumorigenesis, either acting as a tumor suppressor through its broad anti-proliferative

potential or as a tumor promoter either via direct effects on tumor cell aggressiveness or indirectly by modulating stromal

responses, angiogenesis, and immune surveillance. In melanoma mouse models, an elevated TGF-β secretion was
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detected in tumor-associated microglia, inducing the tolerance of tumor cells against T cell cytotoxicity. In addition, the

expression of the TGF-β-receptor ligand TGF-β2 seems to play a critical role in melanoma brain metastases, as

demonstrated in different mouse models. Interestingly, TGF-β2 expression patterns were sufficient to spatially distinguish

brain metastases arising from the B16 and K-1735 murine melanoma metastatic cell lines. B16 melanoma cells

expressing low levels of TGF-β2 formed leptomeningeal diseases, whereas high K-1735 cells expressing high levels of

endogenous TGF-β2 formed metastases in the brain parenchyma . Of note, the modulation of TGF-β2 levels in both

cell lines induced changes in their metastatic formation pattern, supporting the idea that TGF-β2 plays a pivotal role in the

spatial distribution of melanoma metastases in the brain parenchyma.

Cytokines and chemokines can be used for the treatment of brain metastases. High-dose IL-2 is widely recognized in

several studies to produce durable and favorable responses in metastatic melanoma, including patients with brain

metastases . Biochemotherapy with temozolomide, cisplatin, vinblastine, subcutaneous IL-2, and IFN-α in patients

with brain metastatic melanoma was well tolerated but showed a modest antitumor activity . Similarly, low-dose

chemobiotherapy with temozolomide, GM-CSF, IFN-α2β, and recombinant IL-2 produced clinical responses in patients

with metastatic melanoma and may protect against the development of brain metastases . In another study, the

sequential combination of fotemustine, cisplatin, IFN-α, and IL-2 showed acceptable clinical activity, especially in

melanoma brain metastatic patients . This was similar to the effects shown after the sequential combination of

cisplatin, vinblastine, DTIC with IL-2, and IFN-α . Additionally, patients with metastatic melanoma receiving high-dose

IL-2 plus the gp100:209-217(210M) peptide vaccine had a higher response rate and longer progression-free survival than

single regimen-treated patients . Adoptive cell therapy with a nonmyeloablative preparative regimen using either

tumor-infiltrating lymphocytes or T-cell receptor-transduced cells, combined with IL-2, can mediate a complete and

durable regression of melanoma brain metastases in patients . Other therapeutic regimens combining pegylated IFN-

α-2α and dacarbazine , pegylated IFN-α-2β and temozolamide , and IFN-α-2β and tremelimumab  have been

proven to be effective in advanced melanoma patients, with acceptable toxicity and promising durable antitumor activity. In

another study, the intratumoral administration of human IL-12 encoded by a vector derived from the canarypox virus

(ALVAC-IL-12) was well tolerated and resulted in a measurable biologic response in patients with brain metastatic

melanoma . Interestingly, the combined effects of IL-12 and EMD121974 (Cilengitide), a selective integrin αvβ3

antagonist, in melanoma cells significantly inhibited their brain metastatic capacity . However, a prospective

comparison of these therapeutic regimens is needed to confirm all these observations in patient samples.
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