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Using hydrogen energy as an alternative renewable source of fuel is no longer an unrealized dream, it now has real-world

application. The influence of nanomaterials on various aspects of hydrogen energy, such as hydrogen production, storage,

and safety, is considerable.
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1. Nanomaterials Used in Hydrogen Production

Hydrogen production involves four different methods: (1) photoelectrochemical (PEC) water splitting, (2) solid-state

hydrogen storage, (3) photocatalytic hydrogen production, and (4) proton exchange membrane fuel cells (PEMFCs).

Photocatalysis involves the following reaction: photogenerated electrons and holes at the conduction and valence bands

lead to the redox reaction, resulting in hydrogen and oxygen production. Efficient photocatalysts are expected to possess:

(1) suitable band gaps and structures to absorb sunlight/UV light, leading to hydrogen- and oxygen-evolution half-

reactions; (2) good charge transfer ability for electrons and holes, with low recombination rates; and (3) high surface area

for catalytic activity. Fujishima and Honda first reported the successful use of TiO  anode and Pt cathode for solar-driven

water splitting for hydrogen production . In 1979, Bard designed a water splitting system that operates photocatalytically,

using particles/powders as semiconductor photocatalysts . PEC water splitting is considered the primary approach and

TiO  is the best choice of semiconductor for PEC water splitting . TiO  band gap is 3.2 eV, hence it is difficult to absorb

visible and infrared light for solar water splitting, this is why metal or non-metal ion doping has been involved in narrowing

down the band gap of TiO , so that TiO  is also functional under visible light . C-doped TiO  nanocrystalline films

possess high water splitting performance with enhanced conversion efficiency (11%) and photoconversion efficiency

(8.35%), besides these credentials, they were active under visible light, which was an added advantage . Grimes et al.

demonstrated TiO  nanotube arrays for PEC water splitting yielding a photoconversion efficiency of 16.5% under UV light.

The nanotube system owing to its nanotubular architecture, achieves superior electron lifetime and enhanced charge

separation . TiO  and fluorine-doped tin dioxide (SnO :F, and FTO), which is commonly used for

preparing transparent conductive oxides (TCO), has been reported for their contribution in PEC cells . ZnO is yet

another popular wide band gap semiconductor, predominantly used for PEC water splitting applications . Ion doping

 and visible light sensitization with narrow band gap semiconductors  have expanded the light absorption

range and improved the performance of PEC. ZnO nanostructures were doped with shallow Al donor levels, with added Ni

for improved optical absorption . Oval core/shell α-Fe O  nanorod nanoarrays, modified with thin WO /TiO  overlayers,

have been reported to result in enhanced photo efficacy . Other authors controllably tuned the ZnIn S  microstructure

for enhanced visible light-mediated hydrogen evolution . In the past decades, innumerable reports have

addressed the critical requirements of photocatalysts .

Nanomaterials such as CdS, SiC, CuInSe , and TiO  have been used for photocatalytic hydrogen production 

and demonstrated for their enhanced photocatalytic properties. Currently, Nb O  , Ta O  , α-Fe O  , ZnO 

, TaON , BiVO  , and WO  nanomaterials have been explored . In most of these, band gap limitation can

lower H  production . To resolve this issue, noble metal/ion doping, sensitization and metal ion implantation techniques

have been attempted. In noble metal doping, Pt is the best; but it is extremely expensive, so Ag, Ru, Pd, Ni, Cu, and Ir

have been explored in parallel . Incorporation of co-catalysts with photocatalyst nanomaterials

for photocatalytic hydrogen production has also been attempted.

Loading cocatalysts onto photocatalysts to lead to hydrogen or oxygen evolution sites has enhanced photocatalytic

splitting of water. In the past, transition metals, metal oxides, metal sulfides and noble metals, such as Pt, Ru, Au, and

metal oxides, such as NiO , Rh/Cr O , etc., were well utilized as water reduction cocatalysts by entrapping electrons 
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. IrO , RuO , Rh O , Co O , and Mn O  metal oxides have been able to function as effective oxidation cocatalysts by

entrapping the holes . Researchers have loaded noble metals and metal sulfides as dual cocatalysts (Pt–Ag S and Pt–

CuS), which could result in efficient separation of photogenerated electrons and holes for enhanced hydrogen evolution

.

2. Nanomaterials Used in Hydrogen Storage

Various hydrogen storage systems have been explored for hydrogen storage applications .

These include metal hydrides, complex hydrides, chemical hydrides, adsorbents and nanomaterials (nanotubes,

nanofibers nanohorns, nanospheres, and nanoparticles), clathrate hydrates, polymer nanocomposites, metal organic

frameworks, and others . However, as mentioned earlier, none of the currently available

materials meet all these requirements, and the hydrogen content, release temperature and reversibility requirements are

especially hard to meet. The other major option is solid-state hydrogen storage in light metal hydrides 

and complex hydrides such as alanates , amides , borohydrides  and their combinations . An

offset of light metal hydrides are the alkali/alkali earth metal hydrides NaH, LiH, and MgH . Interstitial, or metallic, hydrides

such as PdHx are formed by transition and rare earth elements. Covalently bound hydrides such as AlH  and NH BH  are

also used, but have their own limitations. Recently, the focus has been more on boron hydrides such as LiBH , alanates

such as NaAlH , and even systems containing multiple phases, such as LiBH +MgH . Yet, most of these store 5 wt.%

hydrogen and face kinetics and reversibility issues because of its complex nature and the presence of multiple phases

after dehydrogenation. This being the case, the other alternative method of increasing the hydrogen sorption kinetics is

nanostructuring. Stable crystallites of 5–10 nm were reported in a MgH TiH  system , smaller particles with sizes less

than 10 nm have also been used. In 2005, the breakthrough pioneering work on nanoconfined borane in mesoporous

silica enabled major changes in their hydrogen desorption properties, paving the way for a new beginning . Additional

effects have been identified, such as better mechanical stability and thermal management during cycling via incorporating

carbon materials .

Carbonaceous materials are an attractive option for hydrogen storage owing to its adsorption ability, high specific surface

area, pore microstructure, and low mass density. Despite numerous reports on hydrogen uptake by carbon materials, the

actual mechanism of storage remains a mystery. The interaction is possibly based on van der Waals attractive forces

(physisorption) or by chemisorption. The physisorption of hydrogen, limits the hydrogen-to-carbon ratio restricted to less

than one hydrogen atom per two carbon atoms (i.e., 4.2 mass %). In chemisorption, this is realized as in the case of

polyethylene . Dillon et al. presented the first report on hydrogen storage in carbon nanotubes , which

activated ripples worldwide in carbonaceous materials research. Now, it is known that hydrogen can be physically

adsorbed on activated carbon and be “packed” more densely on the surface and inside the structure of carbon, as if it is

compressed. The best results using carbon nanotubes, are verified to correspond to a hydrogen storage density of about

10% of the nanotube weight .

Fullerenes are currently one of the most popular carbon allotrophs with a close-caged molecular structure . They are

able to react with hydrogen via the hydrogenation of carbon–carbon double bonds and so have been used for hydrogen

storage. A maximum number of nearly 60 hydrogen atoms can be attached inside (endohedrally) and outside

(exothermally) the spherical fullerene surfaces. Thus, a stable C H  isomer is obtained with a theoretical hydrogen

content of ∼7.7 wt.%. It seems that the fullerene hydride reaction is reversible at high temperatures. The 100%

conversion of C H  indicates that 30 moles of H  gas will be released from each mole of fullerene hydride compound,

but this reaction requires high temperatures ranging from 823–873 K .

Hydrogen can also be stored in glass microspheres of approximately 50 μm diameter. These microspheres can be loaded

with H  through heating these glass microspheres to increase their permeability to hydrogen. A pressure of approximately

25 MPa, resulting in a storage density of 14% mass fraction and 10 kg H /m  is reported . At 62 MPa, a bed of glass

microspheres can store 20 kg H /m . The release of hydrogen is through reheating the spheres, which increases the

permeability of hydrogen. Carbon-based sorbents, synthesized from various organic precursors, can be structured into

various carbon forms, such as carbon nanotubes , fibers , fullerenes , and activated carbons .

These structurally diverse forms can be tuned for hydrogen gas storage. Metal–organic frameworks (MOFs) are highly

porous, crystalline solids consisting of a periodic array of metal clusters linked through multi-topic organic struts .

Other highly porous, crystalline materials include zeolitic imidazolate frameworks (ZIFs)  and covalent organic

frameworks (COFs) , which have also been considered as an option for hydrogen storage.

Nanocomposites consist of a polyaniline matrix that can be functionalized by catalytic doping or incorporation of a

nanovariant. It has been reported that polyaniline can store 6–8 wt.% of hydrogen  and a study revealed a successful
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hydrogen uptake of 1.4–1.7 wt.% . With all this in mind, there is still an urgent need for the development of new

reversible materials. Clathrates are a new class of materials for hydrogen storage , which are primarily hydrogen-

bonded H O frameworks, where hydrogen molecules can be incorporated, making it useful for off-board storage of

hydrogen.
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