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Learning and memory formation rely on the precise spatiotemporal regulation of gene expression, such as
microRNA (miRNA)-associated silencing, to fine-tune gene expression for the induction and maintenance of
synaptic plasticity. Some of these are involved in well-known mechanisms, such as the CREB-dependent signaling

pathway, and some of their roles are in fear- and stress-related disorders, particularly cognitive impairment.

learning impairment microRNA memory impairment

1. Direct Evidence of miRNA Regulation in Learning and
Memory

Brain-specific or brain-enriched microRNAs (miRNAs), some of which are transcriptionally induced or promote the
turnover of mature forms by neuronal activity, are widely expressed in different brain regions . It is now well
established that the biogenesis, activity, and degradation of specific miRNAs regulate neuronal plasticity, which is
responsible for many complex brain functions, including the learning/memory process, and that the misexpression
of some miRNAs is associated with neurological disorders 28, For example, the overexpression of miR-34a in
neurons was found to negatively affect dendritic growth and arborization and weakened synaptic plasticity by
reducing synaptotagmin-1 expression in cortical neuronal cultures . In animal experiments, auditory fear
conditioning upregulated miR-34a in the basolateral amygdala, whereas antagonizing miR-34a by miRNA sponges
suppressed auditory fear memory B, Virus-mediated overexpression of miR-34a in the lateral ventricle enhanced
Morris water maze (MWM) performance by promoting neural progenitor proliferation 8. However, transgenic
overexpression of miR-34a in the whole brain exhibited profound behavioral impairment in the T-maze task,
accompanied by accumulation of intracellular amyloid peptide (AB) and tau hyperphosphorylation [,
Overexpression of miR-34c by the injection of mimics or lentivirus into the hippocampus of wild-type (WT) mouse
brain impaired learning and memory formation in multiple behavioral experiments, including MWM, contextual fear
conditioning (CFC), and novel object recognition (NOR). However, the expression of miR-34c was shown to
increase with age in mice and in humans with the onset of Alzheimer’s disease (AD), contributing to impairments in
CFC memory. When miR-34c inhibitors were injected into the hippocampus, the memory-impairing phenotypes
were rescued in an aged AD mouse model (APP/PS1-21) by targeting Sirtuin 1 (SIRT1) & Similar results were
observed in another AD mouse model (SAMP8), indicating that miR-34c mediates synaptic and memory deficits
(tested using the MWM) by targeting SYT1 in the ROS-JNK-p53 pathway .
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1.1. miRNAs Involved in CREB-Dependent Transcription and CREB-Regulated
miRNAs

In the invertebrate Aplysia californica, miR-124 is exclusively enriched in sensory neurons, both soma and
processes, and regulates serotonin-induced synaptic plasticity via CREB regulation 9. miR-124 is an abundant,
brain-specific miRNA. Reducing miR-124 levels through the injection of an locked nucleic acids (LNA)-probe was
found to restore spatial memory and social interaction in adult mice carrying an EPAC-null mutation, whereas AAV-
mediated overexpression of miR-124 in the hippocampus impaired long-term potentiation and spatial memory in
EPAC** mice by regulating the expression of Zif268 L1l demonstrating the prominent role of miR-124 in the

negative regulation of synaptic plasticity and memory formation.

The NAD-dependent deacetylase SIRT1 is essential for normal associative learning in the CFC task, and this
function requires crosstalk with the brain-specific miR-134. The transcriptional regulation of miR-134 is repressed
by SIRT1, which cooperates with the YY1 DNA-binding element, and miR-134 expression is upregulated in SIRT1-
deficient mice. Similar to miR-124, the overexpression of miR-134 negatively regulates fear memory formation and
long-term potentiation induction in the rodent hippocampus through translational repression of CREB mRNA;
therefore, it affects learning and memory in the CFC paradigm by mediating the CREB-BDNF-dependent signaling
pathway 121,

In addition to being a miRNA target, CREB also regulates miRNA transcription. Being co-transcribed from a single
locus containing a functional CRE in the promoter, the miR-132/miR-212 cluster can simultaneously be induced by
neuronal activity-dependent modulation of CREB 3l Predictably, miR-132 manipulation was accompanied by
changes in memory performance. Lentivirus-mediated interference of miR-132 in the hippocampus or double-
knockout miR-132/212 in the forebrain impaired trace fear conditioning, NOR, CFC, and performance in the Barnes
maze in mice 2814 whereas the overexpression of miR-132 in the hippocampus or perirhinal cortex impaired
NOR memory in mice 1% and rats 18, Hansen et al., introduced an inducible miR-132 transgene in the
hippocampus of a mouse strain and demonstrated that the expression of relatively low levels of transgenic miR-
132 (1.5-fold), which is similar to the physiological induction of miR-132 in spatial memory tasks, could significantly
enhance cognitive capacity. In contrast, the overexpression of high levels (3-fold) of miR-132 inhibited learning 2.
This finding indicates that miRNA expression must be maintained within a limited range to ensure normal
functioning. Similar to miR-132, one group previously found that neuronal activity induces miR-466f-3p through the
transcriptional activation of CREB 18] However, unlike miR-132, which is stress-inducible, miR-466f-3p is only
induced in mice with good performance on the MWM task 2. miR-466f-3p appears to be a positive regulator of
neuronal plasticity via the CREB - pCREB - miR-466f-3p — MEF2A axis during spatial learning and memory

formation.

1.2. Regulation of Fear Consolidation and Extinction by miRNAs—From Exposure
to Inhibitory Learning
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Recent examples from the literature further lengthen the list of specific miRNAs thought to be involved in several
types of learning-related behaviors and memory formation processes in the mammalian brain, some of which have
opposite effects. Several studies have demonstrated a role of miRNAs in amygdala-dependent fear learning. For
example, miR-182 was found to be downregulated in the mouse lateral amygdala in vivo after auditory fear
conditioning. The overexpression of miR-182 in the lateral amygdala disrupted long-term fear memory 29,
Conversely, miR-182/96/183, which belong to the same miRNA cluster, were induced in the mouse hippocampus
during the NOR task training. Mimicking this increase by the overexpression of miR-183/96/182 enhanced object
memory, whereas the knockdown of endogenous miR-183/96/182 impaired it. This effect involved the modulation
of several neuronal-plasticity-related genes such as HDAC9 2L, In contrast to miR-182, elevated miR-126a-3p
levels contributed to the consolidation of contextual fear memory by modulating its target (EFHD2) in WT mice.
Decreasing miR-126a-3p using antagomiR impaired the consolidation of CFC, spatial memory (MWM), and
recognition memory (NOR) but not cued fear memory, whereas the overexpression of miR-126a-3p in the dentate
gyrus of the hippocampus reduced the AR plaque area and neuroinflammation as well as rescued contextual fear
memory deficits in the APP/PS1 AD mouse model 22, The overexpression of miR-135b-3p in the basolateral
amygdala not only enhanced remote fear memory in stress-resilient mice but also in the serum of military veterans
suffering from post-traumatic stress disorder (PTSD), indicating that miRNAs play roles in fear- and stress-related
disorders 23, In contrast to miR-134 and miR-126a-3p, miR-128b levels in the basolateral amygdala increased
only after fear extinction, a learned safety-related fear inhibitory paradigm. The knockdown of miR-128b impaired
the formation of fear extinction memory, whereas the forced expression of this miRNA in the mouse infralimbic
prefrontal cortex facilitated fear extinction, indicating that miR-128b is specific to this form of inhibitory learning by
suppressing genes such as Reelin, Crebl, and Rcs 24, More specifically, learned safety is a fear inhibitory
mechanism that has potential as an experimental model for PTSD and depression. The role of miR-132/-212 in
stress-associated, amygdala-dependent learning safety has also been clearly demonstrated 23], suggesting that
mMiRNAs are involved in inhibitory emotional learning and memory. Table 1 and Table 2 summarize studies that
have reported the manipulation of miRNA levels in either WT rodents or disease models with changes in cognitive
performance.

Table 1. Manipulation of miRNA levels in regulating learning and memory in wild-type rodents.

. Change Fold . Behavioral Effects in
s Direction LT Change Sl Tasks LearninglMemoryReference
Basolateral Auditory
miR-34a Down miRNA sponge - fear Impaired &l
amygdala -
conditioning
Up Viral - Lateral MWM Enhanced (61
overexpression ventricle
Up Transgem(.: Thousands Whole brain T-maze Impaired m
overepxression
miR-34c Up viral Hippocampus MWM Impaired (26]
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miR-92
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Injection of
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overexpression
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0.5
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Hippocampus

Hippocampus

Hippocampus

Infralimbic
prefrontal
cortex

Hippocampus
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Hippocampus

Hippocampus

Hippocampus

Behavioral
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MWM,;
NOR
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fear
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Trace fear
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Learned
safety

NOR; CFC;
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Learning/Memory

Impaired
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Enhanced
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Reference

[24]

17

[14]
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[13]

2]
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Figure 1. This figure demonstrates the most well-known Alzheimer’s disease (AD)-related cellular and signaling

pathways in neurons that contribute to learning and memory deficits, and the dysregulated microRNAs along with

the targets involved in the pathophysiological process of AD. The causative factors for AD, including the

aggregation of intracellular amyloid-B (AB), expression levels and activity of B-site APP cleavage enzyme 1

(BACEL), extracellular amyloid plaques, and neurofibrillary tangles (NFTs) from hyperphosphorylated tau, together

with AB-mediated synapse elimination and synaptic failure, may lead to cognitive impairment.
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2.2. miRNAs Are Involved in AB Production and Metabolism

Increasing evidence suggests that miRNAs play a role in regulating AR production/metabolism; therefore, AB-
targeted miRNAs may have therapeutic implications for AD. AB peptides are produced from amyloid precursor
proteins (APP) after cleavage by the (-site APP cleavage enzyme 1 (BACEL). Several miRNAs, including miR-31-
5p, miR-126a-3p, miR-135b, miR-188-3p, miR-195, and miR-338-5p, participate in APP lysis by modulating BACE1
[63][64] Al these miRNAs were found to be downregulated in samples from AD patients or transgenic mice, showing
a negative correlation with BACEZ1, which is highly expressed in the brains of AD patients. The overexpression of
hippocampal miR-188-3p reduced BACE1 expression levels and AB formation and suppressed neuroinflammation
in 5XFAD transgenic mice 2. The overexpression of miR-126a has been found to be neuroprotective against Ap42
toxicity, as discussed above 22, In addition, miR-338-5p, a new miRNA that also targets BACE1, was significantly
downregulated in the hippocampus of AD patients and in two animal models, namely 5xFAD and APP/PS1
transgenic mice. The overexpression of miR-338-5p in the hippocampus rescued spatial memory deficits in
transgenic mice B34, miR-338-5p is also associated with neuronal differentiation, neurogenesis, and neuronal
protective effects through the negative regulation of BCL2L11, which attenuates amyloid plaque deposition,
neuroinflammation, and neuronal apoptosis B354, However, there are other miRNAs that increase AP levels. For
example, miR-128 is involved in the development and progression of AD. In cell culturing, the inhibition of miR-128
attenuated AB-mediated cytotoxicity through the inactivation of the NF-kB pathway 3. The levels of miR-128 and
AB were significantly increased in the cerebral cortex of 3xTg-AD mice, whereas their target peroxisome
proliferator-activated receptor gamma (PPARy) was downregulated. The knockout of miR-128 attenuated an AD-
like performance and alleviated cognitive deficits in 3xTg-AD mice by suppressing amyloid plague formation, AB
generation, and neuroinflammation by targeting PPARYy. In addition to animal models, miR-128 has been shown to
be upregulated in the brain and plasma samples of AD patients [28l83] These findings suggest that miR-128 is a

useful biomarker for the inflammatory pathophysiology of AD.

2.3. miRNAs Contribute to Abnormal Tau Protein Functions

MiRNAs are closely related to the phosphorylation and pathological aggregation of tau proteins. Indeed, as a direct
target of miR-132, the knockout of miR-132/212 leads to increased tau expression, phosphorylation, and
aggregation. Conversely, the treatment of AD mice with miR-132 partially mimics a restored memory function and
tau metabolism (1. Additionally, the downregulation of miR-132/-212 in the hippocampus and prefrontal cortex of
AD patients correlated with neuronal tau hyperphosphorylation, further elucidating the role of miR-132 in
tauopathies 89, Similarly, the expression of miR-132 and miR-212 in neural-derived extracellular vesicles has been
shown to be decreased in AD patients (€8], Further, miRNAs can affect tau phosphorylation by regulating the
activities of relevant enzymes. The overexpression of miR-125b leads to the upregulation of tau kinases, including
p35, CDK5, and p44/42 MAPK (Erk1/2), whereas tau phosphatases (DUSP6, PPP1CA) and the anti-apoptotic
factor Bcl-W were downregulated, all of which contribute to tau hyperphosphorylation in primary neurons.
Moreover, injection of the miR-125b mimic into the hippocampus of WT mice impaired associative learning in the
fear conditioning paradigm and was also accompanied by the downregulation of Bcl-W, DUSP6, and PPP1CA,

resulting in increased tau phosphorylation in vivo (28, The selective knockdown of miR-146a, the most commonly
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deregulated miRNA in developmental brain disorders, in the hippocampus of adult mice was found to cause severe
learning and memory impairments, associated with a reduction in adult hippocampal neurogenesis, indicating for
the first time a role for miR-146a in postnatal brain functions 1. miR-146a was also highly expressed in the brains
of AD patients and 5XFAD transgenic mice, and it promoted pathogenesis by modulating the ROCK1/PTEN
signaling pathway, resulting in abnormal tau hyperphosphorylation in early NFT. The inhibition of miR-146a
expression in the hippocampus resulted in enhanced hippocampal levels of ROCK1, repressed tau

hyperphosphorylation, and a partly restored memory function in 5xFAD transgenic mice 241,

2.4. miRNAs Mediate Synaptic Dysfunction

Synapse formation is the basis of neural signal transduction, whereas synaptic plasticity forms the basis of learning
and memory. Memory impairment in AD patients results from abnormal synaptic plasticity 7. Synapses are
vulnerable to ApB-induced neurotoxicity, and the dysregulation of some miRNAs may contribute to defective synaptic

elimination and cognition in AD by inducing AB-mediated synaptic toxicity.

Kao et al., revealed the role of miR-34c in disrupting dendrites in primary hippocampal neurons [28]. Additionally,
miR-34c is upregulated during AB accumulation by targeting the VAMP2 gene. As miR-34c blockade upregulated
VAMP2 expression levels and rescued AB-induced synaptic failure, learning and memory deficits were ameliorated
(8] Another study indicated that miR-124 levels were increased in the temporal cortex and hippocampus of AD
patients and in a Tg2576 AD mouse model B8, Induced levels of miR-124 recapitulated AD-like phenotypes in
mice, including memory impairment and deficits in their synaptic transmission and plasticity, by directly regulating
the expression of the target gene PTPN1. Thus, maintaining the balance of miR-124/PTPNL1 levels by suppressing
miR-124 can restore synaptic failure and memory deficits. These findings indicate that the miR-124/PTPN1
pathway is a critical mediator of synaptic dysfunction and memory loss in AD. In contrast, some miRNAs were
found to be abnormally reduced in AD models and could have positive effects on neurons. miR-188-5p expression
was found to be downregulated in the cerebral cortices and hippocampus of AD patients as well as in the brains of
5XFAD transgenic mice. The replenishment of miR-188-5p rescued AB-mediated synapse elimination and synaptic
dysfunction, as well as impaired cognitive function by targeting NRP-2 in 5xFAD transgenic mice 8], One of the
targets of miR-132 is C1q, a classical complement cascade protein that mediates synapse elimination in the central
nervous system and is highly expressed in AD patients. APP/PS1 transgenic mice transfected with miR-132
showed a significant increase in synaptic protein (PSD95, Synapsin-1, p-Synapsin) expression compared with the
non-transfected AD group. These results suggest that miR-132 maintains synaptic plasticity by regulating C1q

expression in AD 9],
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