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Fluorescence imaging technology provides a visual tool for medicine, showing great potential in the fields of

molecular biology, cellular immunology and oncology. In recent years, organic fluorescent probes have attracted

much attention in the bioanalytical field. Among various organic fluorescent probes, fluorescent organic small

molecule probes (FOSMPs) have become a research hotspot due to their excellent physicochemical properties,

such as good photostability, high spatial and temporal resolution, as well as excellent biocompatibility. FOSMPs

have proved to be suitable for in vivo bioimaging and detection. 

fluorescent organic small molecules  bioimaging  detection  recognition mechanisms

fluorescent organic nanoparticles

1. Introduction

The key substances inside the human body, including metal ions , biological small molecules , reactive

oxygen species  and reactive nitrogen , are closely related to biological events, regulating physiological

functions and metabolism. For instance, metal ions (e.g., Fe , Na , Al  and Mg ) play important regulatory roles

in metabolism and osmolality . Biological small molecules, such as homocysteine (Hcy), cysteine (Cys) and

glutathione (GSH) participate in metabolism and redox reactions . The content of reactive oxygen species

and reactive nitrogen reflects many pathological states, especially the development of cancer .

Therefore, monitoring the levels of these substances is helpful for understanding human health status.

With the development of in vivo imaging technology, more and more tracer techniques have been applied in

biomedical research. Traditional tracing methods are usually required to remove tissues from the body, which

cannot realize the real-time dynamic monitoring of the target substances. Currently, the commonly used in vivo

tracer techniques include radionuclide imaging, magnetic resonance imaging (MRI), optical imaging and so on .

Radionuclide imaging can achieve quantitative and localization analysis of cells, but it has the shortcomings of low

spatial resolution and the need of expensive equipment . MRI with high spatial and temporal resolution

enables monitoring of changes in cellular function, but this technique faces the problem of long imaging time . In

vivo luminescence imaging is a non-invasive technology, including bioluminescence imaging (BLI) and

fluorescence imaging, mainly used to study gene expression and cell activity. Compared with BLI, the signal of

fluorescence imaging is stronger and the detection accuracy is higher . At present, in vivo fluorescence

imaging has become a hotspot in biomedical research due to its advantages of low toxicity, high spatiotemporal

resolution and utilization of an inexpensive instrument . For example, fluorescent dye indocyanine green
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(ICG) imaging has been used in a variety of abdominal surgery applications, such as lymph node localization,

ureteral detection and tumor identification . In recent years, some fluorescent probes with high specificity have

also been developed and used for in vivo imaging .

To date, many types of fluorescent probes, such as fluorescent organics , fluorescent proteins ,

inorganic nanoparticles  and semiconductor polymer nanoparticles  have been developed and widely

used in bioimaging. Fluorescent proteins can be generated by cells themselves through genetic engineering, which

is convenient for in vivo imaging. However, they are hard to metabolize in the body. Inorganic nanoparticles have

good spectral properties and light stability, but the biological toxicity limits their application in bioimaging.

Semiconductor polymer nanoparticles have high fluorescence brightness, but slow metabolism causes them to

accumulate in the liver. Comparatively, fluorescent organic small molecule probes (FOSMPs) attracted more

attention because of their controllable synthesis, stable luminescence, good biocompatibility, sensitive response

and high signal-to-noise ratio . When applied to imaging, the photochemical properties of FOSMPs are

generally more stable than other types of probes. Additionally, small molecules also help to achieve higher

fluorophore density and spatial resolution. Therefore, a large number of FOSMPs have been designed and applied

to detect substances in various matrix . Fluorescent organic nanoparticles (FONPs), which

were designed with FOSMPs as fluorophores, show the ability to build a multifunctional biosensing platform

through surface functionalization and drug encapsulation . A summary of the progress on the applications of

FOSMPs in bioimaging and detection is of significance for the development of new diagnostic tools. There are no

special reviews focusing on this field.

2. FOSMPs for Bioimaging and Detection

Fluorescence is the phenomenon that electrons return from the first singlet state to the ground state with

concomitant energy release in the form of light. The characteristics of the fluorescent probes such as excitation and

emission wavelength, intensity, lifetime and polarization are easily influenced by the environment conditions,

thereby providing sensitive signals for the tracking and monitoring of analytes . The structure of

FOSMPs is mainly composed of three parts: the recognition group, the fluorophore, and the linking group (linker)

(Figure 1). The recognition group endows the fluorescent probe with detection selectivity. The fluorophore provides

the signal response when the probe recognizes the target. The linker connects the recognition group and the

fluorophore and is not necessary for the fluorescent probe.
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Figure 1. The structure of FOSMPs and its recognition of the target.

As shown in Figure 2, according to the interaction manner between FOSMPs and targets, the recognition

mechanisms can be divided into five types: photo-induced electron transfer (PET), intramolecular charge transfer

(ICT), fluorescence resonance energy transfer (FRET), excited state intramolecular proton transfer (ESIPT) and

aggregation-induced emission (AIE). Based on these recognition mechanisms, various FOSMPs for bioimaging

and detection have been developed, as listed in Table 1. In the following, the applications of FOSMPs in

bioimaging and analysis based on these recognition mechanisms are reviewed.
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Figure 2. Schematic illustration of the principles of (a) PET, (b) ICT, (c) FRET, (d) ESIPT and (e) AIE.

Table 1. Fluorescence characteristic, recognition mechanisms, and applications of FOSMPs.

Probe λex/λem (nm) Mechanism Analyte Solvent
System

Linear
Detection

Range

Limit of
Detection

(LOD)
Target Ref.

Probe 500/525 PET Cys

CH CN-
Water-
HEPES
buffer

0–100
μM

3.7 ×
10  μM

A375 cells

NP-S 455/551 PET H S
PBS

buffer-
EtOH

30–300
μM

0.376
μM

Mouse
liver slices

Tyro1, Tyro2 455/560 PET Tyrosinase
Potassium
phosphate

buffer
- -

B16F10
cells

NFP-G, NFP-
A

440/541 PET Formaldehyde (FA)
DMSO-

PBS buffer

0–30
μM, 0–
15 μM

1.2 μM,
0.18 μM

HepG-2
cells

Naphthalimide
chromophore

400/502 ICT CN
HEPES
buffer -
CH OH

0–15
μM

0.066
μM

HepG2
cells

DCM-β-gal 535/685 ICT β-galactosidase (β-gal)
PBS

buffer-
DMSO

0–12
U/L

0.17
U/L

293T cells

DCDHF-Glu 510/613 ICT
γ-

Glutamyltranspeptidase
(GGT)

PBS buffer
0–40
U/L

0.0379
U/L

HepG2
cells, LO2

cells

SHC 370/540 ICT hNQO1 PBS buffer
0–0.8
μM

0.0146
μM

HT-29
cells,

MDA-MB-
468 cells

AI 370/495 ICT
Hypochlorous acid

(HOCl)
DMSO-

PBS buffer
0–50
μM

0.84 μM
HeLa
cells,

Nude mice

P-ONOO 365/480 ICT ONOO
DMSO-

PBS buffer
0.429–
3.0 µM

0.0104
µM

HeLa cells

SR400,
SR550

400/525,
550/675

FRET H S PBS buffer - -
HEK293

cells

3

−2
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3. FOSMPs-Based FONPs for Bioimaging and Detection

Compared with FOSMPs, FONPs have larger surface area, better biodegradability and greater resistance to

photobleaching . FONPs-based multifunctional biodetection platforms can be constructed through drug

encapsulation and surface modification of targeting groups. Researchers briefly describes the preparation and

applications of FOSMPs-based FONPs in bioimaging and detection.

Zhang et al.  reported a strategy to prepare FONPs by encapsulating the fluorophore C18-R in synthetic

copolymer matrices. First, the copolymer aqueous solution was added to the C18-Rd THF solution under

sonication. In the process of removing THF, the hydrophobic segment of the copolymer wrapped C18-R through

hydrophobic interaction to form a “core-shell” structure, and finally the C18-R-PEG FONPs were obtained. CLSM

Probe λex/λem (nm) Mechanism Analyte Solvent
System

Linear
Detection

Range

Limit of
Detection

(LOD)
Target Ref.

CF 415/517 FRET HNO PBS buffer
0–100

μM
1.4 μM HeLa cells

FIP-1 515/556 FRET Fe(II)
HEPES
buffer

- -

HEK293
cells,

MDAMB-
231 cells

PNCy3Cy5 530/660 FRET OONO
Phosphate

buffer-
DMF

0–0.7
μM

6.5 ×
10  μM RAW264.7

FTR-βgal 450/540 FRET β-gal
PBS

buffer-
EtOH

0–5 U/L
4.11 ×
10
U/L

Hek293
cells

PPA 400/511 ESIPT Palladium
CH CN-

PBS buffer
0–180

μM
0.028
μM

A549 cells

Py-GSH 488/545 ESIPT GGT PBS buffer
1–30
U/L

1 × 10
U/L

SKOV3
cells,

HOSEpiC
cells,

Tumor-
bearing
mice,

Human
specimens

NIR-TS 550/836 ESIPT SO Water
0.5–40

μM
0.067
μM

HeLa
cells, Mice

TPE-Gal 344/512 AIE β-gal PBS buffer

8 ×
10 –
4.8 ×
10
U/L

3.3 ×
10
U/L

HeLa
cells,

OVCAR-3
cells

TT 320/440–550 AIE H O
DMSO-
Water

- -
RAW264.7
cells, HLF

cells

QP-DNP 482/582 AIE Hydrazine
DMSO-
HEPES
buffer

0–0.8
μM

0.055
μM

HeLa
cells,

Kunming
mouse

AIE-Lyso-1 356/532 AIE/ESIPT Esterase DMSO– 100– 2.4 U/L MCF-7
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images and cell uptake experiments proved that the C18-R-PEG FONPs has good biocompatibility and can be

used for bioimaging.

Enhanced fluorescence emission can be obtained by loading high concentrations of fluorophores into FONPs since

AIE can occur at high concentrations of fluorophores. Zhang et al.  prepared near-infrared emitting AIE dots with

a particle size of ~20 nm and a fluorescence quantum efficiency of 20% by using the amphiphilic polymer poly

(styrene co maleic anhydride) (PSMA) as the co-encapsulation matrix and a novel small-molecule fluorophore

(2Z,2′Z)-3,3′-(2,5-di(piperidin-1-yl)-1,4-phenylene)bis(2-phenylacrylonitrile) (DPPBPA) as the core. The final product

SA dots were obtained by modifying streptavidin on its surface to achieve specific binding to target cells. SA dots

have been successfully used for fluorescence imaging of MCF-7 cell line benefit from their uniform size, stable

luminescence and excellent biocompatibility.

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol) (DSPE-PEG ) is a typical package

matrix that is widely used in the design of FONPs due to its good biocompatibility . Transcription-AIE

(Tat-AIE) dots prepared using DSPE-PEG  as the matrix was first reported as cell-tracing probes in 2013,

showing brighter fluorescence, better fluorescence stability and cell-tracking ability than commercial quantum dot-

based probes. Li et al.  encapsulated the fluorophore TPETPAFN by using a mixture of DSPE-PEG  and

DSPE-PEG -NH . Then, Tat-AIE dots were obtained by coupling AIE dots with cell penetrating peptide HIV-1

Tat. TPETPAFN has poor water solubility but is easily soluble in THF solution. The fluorescence of TPETPAFN was

turned on when the THF/water volume ratio was 1:1 and the fluorescence intensity increased exponentially with the

increase of the ratio of water. The fluorescence intensity of TPETPAFN showed a 70-fold enhancement at a 90%

water volume fraction. The hydrodynamic size and quantum yield of the as-prepared NIR-emitting Tat-AIE dots

were ~30 nm and 24%, respectively. Compared to commercial Qtracker  655, Tat-AIE dots displayed 10-fold

stronger fluorescence intensity and better long-term tracing ability. Tat-AIE dots could trace MCF-7 cells for 10–12

generations and trace C6 cells for 21 days in vivo. 
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