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Zr is an emerging radionuclide that plays an essential role in immuno‐positron emission  tomography (PET) imaging.

Immuno‐PET combines the sensitivity of PET with the specificity  of antibodies, and thus is useful for predicting the

efficacy of radioimmunotherapy and antibody therapies, imaging target expression, detecting target‐expressing tumors,

and the monitoring of anti‐cancer chemotherapies. PET using Zr is not confined to antibody imaging. In this review,

we discuss Zr‐PET applications other than immuno‐PET.
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Zr-Labeled Nanoparticles PET

Various radionuclides including  Au,  In,  Cu,  Te,  Re,  Ho, and  Tc have been used for nanoparticle-

based nuclear medicine imaging and therapy  . Dozens of studies concerning  Zr-labeled NPs have already been

reported, although only a few are clinical. Researchers suggest that  Zr-labeled NPs (liposomal NPs, nanocolloids,

mesoporous silica NPs, dextran NPs, chitosan NPs, etc.) are also promising for tumor detection, the development of

nanoparticle drugs, the monitoring of drug delivery, inflammation imaging, and tumor-associated macrophage (TAM)

imaging.

TAMs lead to disease progression in cancer cells by modulating the tumor microenvironment and are thus potential

targets for anti-cancer therapy. To predict the efficacy of anti-TAM therapy, it is crucial to monitor the quantity and

distribution of TAMs.  Zr-labeled natural high-density lipoprotein (HDL) and dextran NPs showed favorable tumor

uptake  . The co-localization of these radiotracers with a macrophage was revealed by histology and fluorescent

imaging  . These results suggest that  Zr-labeled NPs can be a good tool for monitoring anti-TAM therapy.

Several studies presented evidence for  Zr-labeled nanocolloidal albumin as a PET imaging agent for sentinel lymph

mapping  . In patients with early colon cancers or oral cavity cancers, PET detected sentinel lymph nodes with a

very high sensitivity  . Due to the long half-life of  Zr, sentinel lymph node mapping using  Zr-NPs has the

advantages of accomplishing both PET imaging and intraoperative probe detection via the single injection of a radiotracer,

even though surgical procedures are performed on another day.

Zr-labeled NPs for atherosclerotic plaques are good examples of inflammation imaging. HDL mimetic infusion has been

studied for years as a method to reduce cardiovascular risk. One of the reasons for the failure of HDL mimetic infusion is

its low target delivery.  Zr-labeled natural HDLs and HDL mimetics are delivered to atherosclerotic plaques by being

trapped in the macrophages . The uptake of  Zr-labeled HDL mimetics, CER-001, was slightly higher in plaques than

in non-plaque walls and correlated well with the contrast enhancement by magnetic resonance imaging (98). Recent

animal studies revealed that  Zr-labeled dextran or hyaluronan NPs have the ability to detect atherosclerotic plaques and

monitor anti-inflammatory therapy  .

Zr-Induced Cerenkov Luminescence Imaging and Therapy

The Cerenkov effect was characterized by Pavel A. Cerenkov in 1934 as the radiation emitted when charged particles (β ,

β , α) travel through an optically transparent insulating material with a velocity that exceeds the speed of light. Cerenkov

luminescence imaging has been exploited in a number of preclinical studies. The β  particles emitted by  Zr also produce

Cerenkov luminescence. Using  Zr-J591 and luminescence imaging, prostate cancers were visualized in animal

models  .

Photodynamic therapy requires external light to activate the photosensitizers for cancer therapy. Cerenkov radiation

from  Zr can be used as a light source for this purpose.  Zr-labeled mesoporous silica NPs have  Zr and

photosensitizers inside their hollows. In a breast cancer model, the tumor suppression effect was greater for the  Zr-

labeled mesoporous silica NPs than for the NPs only, or for the control  . The advantage of  Zr over conventional

approaches is that  Zr’s long half-life facilitates long-term photodynamic therapy.
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Cell Tracking with  Zr

Due to its old modality, radiolabeled leukocytes, cell tracking is nothing new for nuclear medicine imaging. Thus, it has

already been adopted for various types of cell tracking. Using nuclear medicine imaging to evaluate the early distribution

and viability of radiolabeled stem cells is a notable example  . With the development of cancer immunotherapy, tracking

therapeutic cells is becoming more important for predicting the effectiveness of a therapy.  Zr has a favorable physical

half-life for tracking cells in vivo. Additionally, similar to  In-oxine,  Zr-oxine can be labeled to cells directly.

Chimeric antigen receptor (CAR) T-cells are transduced to locate specific targets on the surface of tumors. A few

drawbacks of CAR T-cells include their poor tumor-targeting ability and normal tissue toxicity  . The prediction of

therapeutic efficacy by cell tracking is critical to overcome these shortcomings. Direct labeling with  Zr-oxine allowed the

visualization of CAR T-cell migration to tumors in a glioblastoma model  . Labeling with  Zr-oxine did not affect the

viability and function of cells. The fragmented antibody F(ab’)  for T-cell receptors is another candidate that showed high

sensitivity for T-cells in an animal model. Transduced cells as small as 4.7 × 10  were detected via PET imaging, and the

tumor uptake quantity was proportional to the number of injected cells  .

Zr-desferrioxamine-N-chlorosuccinimide (DBN) is also actively studied as a direct cell labeling method. Unlike  Zr-

oxine,  Zr-DBN binds covalently to the amine groups of cell surface membrane proteins  . Although the labeling

efficiency was low to moderate (30~50%),  Zr-DBN was stably bound to human mesenchymal stem cells (hMSCs) for up

to 7 days without deteriorating the cellular viability  . PET imaging using  Zr-hMSC that were delivered to the adventitia

of the outflow vein of arteriovenous fistula allowed to track transplanted hMSCs for 3 weeks  . More than 90% of the

transplanted cells were detected at the site of delivery on day 4, which was decreased by 20% on day 21  .  Zr-DBN

was also labeled to hepatocytes with a labeling efficiency of 20%  . The initial amount of homing cells and the

subsequent retention was monitored up to 48 h by PET imaging  .
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