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HIV protease inhibitors against the viral protease are often hampered by drug resistance mutations in protease and in the

viral substrate Gag. To overcome this drug resistance and inhibit viral maturation, targeting Gag alongside protease rather

than targeting protease alone may be more efficient. 
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1. Introduction

Many anti-HIV drugs interfere directly with the viral life cycle by targeting key viral enzymes , e.g., reverse transcriptase

inhibitors , integrase inhibitors , and protease inhibitors . While such efforts are already hampered by the

emergence of drug resistance mutations in the enzymes (e.g., in ), the scenario further worsens when viral enzyme

substrates, such as Gag (HIV protease substrate), are found to synergistically contribute to drug resistance.

Gag and protease play key roles in the viral maturation process  where the immature HIV virion matures into the

infectious virion after budding from the infected cell for the next replication cycle. Proteolysis of Gag by protease occurs

during the early stage of this maturation (Figure 1A), in which the intact full length Gag precursor polyprotein is cleaved

by the viral protease into functional subunits  . To inhibit this proteolysis, protease inhibitors (PIs) block protease activity

in a competitive manner with Gag for protease binding .

Figure 1. An overview of the Gag and Protease relationship. (A) A schematic of the early stage of viral maturation where

HIV-1 Protease cleaves Gag into the functional subunits: Matrix (MA), capsid (CA), nucleocapsid (NC), p6, and two

spacer peptides p1 and p2. (B) To inhibit viral maturation, protease inhibitors (PIs in green) are used to competitively

inhibit protease binding of Gag. PI resistant mutations are denoted by colored stars, where those in the protease catalytic

site are in blue, while those in Gag are red for cleavage sites, and purple for non-cleavage sites.
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2. Possible Targets in Gag

The Gag polyprotein consists of components matrix (MA), capsid (CA), nucleocapsid (NC), p6, and two spacer peptides

p1 and p2. The MA subunit, located at the N-terminus, is essential for targeting Gag to the cell membrane, while the CA

forms a shell to protect the viral RNA genome and other core proteins during maturation. The NC is responsible for RNA

packing and encapsidation  while the two spacer peptides p1 and p2 regulate the rate and the sequential cleavage

process of Gag by protease . This process of viral assembly is complemented by viral budding moderated by the small

Proline-rich p6. Mutations at either the N-terminal or C-terminal of these core proteins were reported to block viral

assembly and impair Gag binding to plasma membrane, thereby inhibiting viral budding .

Since the Gag cleavage sites do not share a consensus sequence (Figure 2), the recognition of the cleavage sites by

protease is likely to be based on their asymmetric three-dimensional structures  that would fit into the substrate-binding

pocket of protease . The cleavage of these scissile bonds (seven-residue peptide sequences unique for each cleavage

site) are highly regulated and occur at differing rates . The first cleavage occurs at the site between the p2

peptide and NC domain (Figure 2), followed by the MA from CA–p2 at a rate that is ~14-fold slower than that of the first

cleavage, before proceeding to release p6 from the NC-p1 domain (at a rate ~9-fold slower than the first cleavage). At the

last step, the two spacer peptides p1 and p2 are cleaved from NC-p1 and CA–p2 at rates ~350-fold and ~400-fold,

respectively, slower than the initial cleavage .

Figure 2. The sequential Gag proteolysis by Protease. The cleavage sites are marked by the 7-residues, along with the

estimated cleavage rates  marked by arrows. For easy comparison, the initial cleavage site rate is set to the value of 1,

while the other cleavage site values depict the reduced normalized rate. The cleavage site sequences are colored based

on their physicochemical properties, e.g., hydrophobic (black), charged (positive: blue, negative: red), polar (other colors),

and varied in text sizes based on positional conservation, using WebLogo . Structural surface presentations of the

cleavage sites are also attached for visualization.

To date, there are nine PIs, i.e., Saquinavir (SQV), Ritonavir (RTV), Indinavir (IDV), Nelfinavir (NFV), Fos/Amprenavir

(FPV/APV), Lopinavir (LPV), Atazanavir (ATV), Tipranavir (TPV), and Darunavir (DRV) in clinical treatment regimes .

With increasing PI resistance  and cross-resistance  conferred by protease mutations that

compromise viral fitness, there is a compromise between enzymatic activity and drug inhibition by protease within its 99-

residue homodimer subunits. Mapped to the resistance to several current PIs , many mutations were found to

spontaneously arise as part of the natural variance  selected for during the treatment regimes. These mutations directly

intervene with PI binding via steric perturbation at the active site, and those distant from the active site allosterically

modulated protease activity . However, such mutations often reduce viral fitness, resulting

in future repertoires of viruses with compromised fitness . This fitness trade-off is then compensated by additional

mutations that restore enzymatic activity to an extent .

To fully study the Gag–protease synergy, there is a need to study the limitations and mechanisms by which Gag mutations

arise. Although the sequencing of clinical samples is the predominant source of HIV sequences, there are attempts to

study and generate novel mutations ) for various HIV proteins. One example of such an effort  involved

subjecting the Gag mRNA transcript to HIV reverse transcriptase (RT) to explore the repertoire of possible Gag mutations

in the absence of drug or immune selection pressures. It was shown that clinically reported mutations could be generated

and that the location and type of mutations incidentally avoided crucial locations and drastic changes. While such

selection-free platforms can reveal the possible repertoires of Gag mutations for inhibitor design against emerging

resistance, the large permutations require focusing through structural analysis for comparison to known clinical

mutations taking into consideration the in-built mutational biases in the genetic code.
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Characterized clinical Gag mutations  are sparse, with many reported to restore reduced binding to

mutated proteases . The lack of a high-resolution structure of full-length Gag for study of these

mutations makes it difficult to analyze structurally the effects of these mutations on the whole Gag during its binding to

protease. Fortunately, the recent full length model of Gag  allowed some investigation of non-cleavage site

mutations.

3. The Role of Gag Mutations in Restoring Gag–Protease Synergy in PI
Resistance

The mapping of Gag mutations associated with protease drug resistant mutations are summarized in Table 1. Gag

cleavage site mutations at the p1/p6 (L449F) and NC/p1 (L449F-Q430R-A431V) sections were found to be associated to

protease mutation I84V . Similarly, Gag mutations A431V and I437V were mapped to protease mutation V82A .

Apart from compensating the loss of viral fitness, mutations P453L (Gag) and I50V (Protease) synergistically mitigated

Amprenavir effectiveness (e.g., increasing IC  value of Amprenavir) and Gag mutations A431V-I437V together with

protease V82A were found to lead to Indinavir resistance  .

Table 1. Gag and Protease paired mutations compensating for viral fitness and viral replication. Gag mutations are

colored according to domains: MA (red), CA (green), NC (magenta), and p6 (orange).

  

Inhibitor
Strain or Lab

Clone
Mutations on Gag Mutations on Protease

Amprenavir HIV-1 NL4-3

(pNL4-3)

V35I–L75R–H219Q L10F–V32I–M46I–I84V

Amprenavir HIV-1 NL4-3

(pNL4-3)

L75R–H219Q–R409K–L449F–E468K L10F–V32I–M46I–I84V

Amprenavir HIV-1 NL4-3

(pNL4-3)

E12K–V35I–L75R–H219Q–V390D–R409K–

L449F–E468K

L10F–V32I–M46I–I54M–

A71V–I84V

JE–2147 HIV-1 NL4-3

(pNL4-3)

H219Q–V390D M46I–I84V

JE–2147 HIV-1 NL4-3

(pNL4-3)

H219Q–V390D–R409K–L449F V32I–M46I–I47V–V82I–

I84V

KNI–272 HIV-1 NL4-3

(pNL4-3)

V35I–E40K–G123E–H219Q–G381S–

R409K–A431V

V32I–M46I–A71V–V82I–

I84V

UIC–94003 HIV-1 NL4-3

(pNL4-3)

E12K–E40K–G123E–Q199H–H219Q–

R409K–G412D–L449F–E468K

L10F–M46I–I50V–A71V

Amprenavir HIV-1 HXB2 P453L I50V

BILA–1906BS HIV-1 strain IIIB L449F M46L–A71V–I84V

BILA–2185BS HIV-1 strain IIIB L449F–Q430R–A431V
L23I–V32I–M46I–I47V–

I54M–A71V–I84V
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Inhibitor
Strain or Lab

Clone
Mutations on Gag Mutations on Protease

Indinavir HIV-1 pNL4.3 A431V–I437V V82A

Ritonavir/Saquinavir
HIV-1 subtype

B 
A431V–L449F I84V

 the study involves patients.

Non-cleavage site mutations associated with PI resistance , included H219Q and R409K for Amprenavir, JE-2147,

KNI-272, and UIC-94003 resistance. Gag L75R and H219Q together with Protease mutation I84V, led to Amprenavir and

JE-2147 resistance. Together, these non-cleavage site mutations (synergistically with E12K, V390D, and R409K) delayed

resistance to other PIs, e.g., Ritonavir and Nelfinavir . Interestingly, most of these Gag non-cleavage site mutations are

located on the MA–CA or p1–p6 domains. Gag MA domain mutations (e.g., R76K, Y79F, and T81A) were suggested to

enhance Protease accessibility to Gag cleavage sites . Nonetheless, the exact mechanism of such non-cleavage

mutations remains elusive due to the lack of full-length Gag structure and its sequentially cleaved subunits.

Limited structural research  have revealed an underlying allosteric mechanism in resistance development by

Gag non-cleavage mutations that allosterically rendered the first cleavage site to be more flexible . When coupled with

protease mutations, several Gag compensatory mutations recovered protease binding affinities. Thus, the Gag and

protease mutations synergistically formed a resistance network against multiple PIs . By mapping these Gag–

protease resistance relationships (Figure 3) onto our previously constructed PI cross-resistance network , similar

combinations of Gag mutations were found to resist varied PIs, independent of their diverse chemical scaffolds .

Figure 3. A schematic map of associated Gag–Protease drug resistant mutations. Mutation hotspots are shown on both

the Gag and Protease, and representatives of paired combinations of Gag and Protease mutations are shown in boxes.

More details can be found in Table 1. Gag mutations are colored according to domains: MA (red), CA (green), NC

(magenta), and p6 (orange).
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