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AI and, in particular, the Deep Reinforcement Learning (DRL) algorithms, which are a perfect response to the

unpredictability and volatility of modern demand, are studied in detail. Through the introduction of RL concepts and

the development of those with ANNs towards DRL, the potential and variety of these kinds of algorithms are

highlighted. Moreover, because these algorithms are data based, their modification to meet the requirements of

industry operations is also included. Digital twins are a technology that is increasingly important in I.40 and I.5.0,

which seems to be crucial to the development of smart manufacturing. 
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1. Introduction

Roughly a decade ago, industry 4.0 (I4.0) emerged as the term to define the fourth industrial revolution. Its

objective is the transition from the mass production automation of the third industrial revolution to more efficient

and flexible production . It can be defined as a technology-driven revolution focusing on further automation and

the digitalisation of industrial processes. This results in smart factories, which make use of improved technologies,

such as artificial intelligence (AI), Internet of Things (IoT), cloud computing and cyber-physical systems (CPS) .

However, it lacks a human-centric and sustainability-centred vision. Moreover, the COVID-19 crisis revealed some

deficiencies in global industrial production, which lacks enough flexibility to deal with abrupt changes in production

demand . For this reason, the term industry 5.0 (I5.0) has been introduced . This new concept strengthens and

complements the objectives of I4.0 through a human-centric, sustainable and resilient industry, reinforcing the

contribution of industry to worker welfare and green transition. To this end, it combines the advances in I4.0

technologies in terms of digital twins, CPS, Big Data and AI, among others, with innovative technologies that have

surged in the last years . all in all, with a human and sustainable-centred perspective .

In 2021, manufacturing recovered to pre-pandemic levels of activity, generating approximately 17% of the gross

domestic product (GDP) on average around the world  and 14.9% in the European Union, making it the most

important industrial activity at the economic level .
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Independently of the sector, manufacturing comprises many processes, from planning and scheduling to executing

physical operations in the production line until the product is ready for distribution . Among these processes,

there are tasks involving production scheduling, assembly, decision support systems and path planning. Currently,

many of them are carried out by digital systems and robots thanks to the automation of factories, improving their

efficiency . However, applying artificial intelligence, in particular machine learning (ML), takes a step forward in

this enhancement. Without being explicitly programmed, machine learning algorithms endow automatons with

cognitive capabilities that allow them to learn a task . However, the bulk of these algorithms require data in order

to learn, and it is not always possible to obtain accurate data in some industrial settings. Reinforcement learning

(RL) is a machine learning paradigm that is ideal since its algorithms immediately learn from interaction with the

environment. Additionally, the use of deep neural networks (DNNs) with RL algorithms gave rise to deep

reinforcement learning (DRL), whose algorithms are capable of learning more complex tasks . Furthermore,

those algorithms are relevant for both I4.0 and the upcoming I5.0 since they align with the objective of industry 5.0

easily adapting to a more human-centred approach .

As reflected in most of the reviews concerning smart manufacturing, I4.0 and I5.0, AI is identified as a key enabling

technology. However, AI is a huge study field, and the majority of those reviews do not go deep into how and what

to implement given a specific problem. Furthermore, the results in that direction are even scarcer when focusing on

more specific AI fields such as DRL. In this sense, the research provides a review of the most commonly used DRL

algorithms in manufacturing processes, including their main characteristics and performance, real applications and

implementation. Therefore, the research is intended to serve as a guideline for the development and improvement

of factories in line with industry 4.0 and 5.0, promoting the use of DRL techniques and algorithms.

Reinforcement Learning

In the early history of reinforcement learning, there were three threads; the first one focused on learning by trial and

error; the second one centred on the problem of optimal control; and the third one surged later on, based on ideas

from the first two, concerned temporal–difference methods. All of them came together in the late 1980s to give birth

to the modern field of reinforcement learning . Nowadays, reinforcement learning has been consolidated as one

of the three main machine learning paradigms, together with supervised and unsupervised learning .

Reinforcement learning algorithms are based on an iterative learning process. The learning process is based on

trial and error and the interaction between an agent and an environment . This interaction is modelled as a

Markov Decision Process (MDP), a concept first introduced by Bellman R. E. in 1957 . Through this idea, the

interaction is reduced to three signals: state  (the current situation of the environment); action (operation or

decision taken by the agent based on the state and its experience); and reward  (numerical feedback that the

environment returns to the agent to indicate how good or bad is the action taken by the agent) . Figure 1

illustrates this interaction.
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Figure 1. Structure of Markov Decision Process.

In the learning process, the value function and the policy are updated and improved regarding each other. Under

this, the exploration–exploitation problem exists, and a trade-off must be found . On the one hand, exploration

of new actions is necessary to learn alternative paths to achieve the goal and learn the task, whereas exploitation

leverages the acquired knowledge to maximise the accumulative reward . On the other hand, exploitation

consists of applying the knowledge learned and mostly taking the optimum action known .

Firstly, RL algorithms go through an exploratory phase to learn the dynamics of the environment. In this sense,

there are several exploration techniques. The most common technique is a random exploration which usually gives

great results, as reflected through impressive performances in self-driving cars , autonomous landing , Atari

games , Mujoco simulator , controller tuning  and much more. There are also complex techniques, such as

reward shaping , where the algorithm designer arbitrarily modifies the agent’s rewards. However, this

technique highly depends on the designer’s experience and knowledge of the problem. Errors in reward shaping

may lead to infinite repetition of action  or no actions at all . An extensive analysis concerning the exploratory

techniques and their benefits and drawbacks can be found in Pawel L. et al.’s (2022) survey .

Secondly, once the agent explores the environment and learns the consequence of its actions, it passes to exploit

that knowledge. However, depending on the problem handled, the agent usually maintains part of its exploratory

behaviour just to ensure that the policy of actions followed is still the best. The balance between exploration and

exploitation is still an open issue under investigation since there is no unique and perfect solution, but every

problem has its own solution .

2. Deep Reinforcement Learning
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To address higher dimensional and more complex problems, deep neuronal networks (DNNs) were incorporated

into RL, leading to deep RL (DRL) . DNNs are used as function approximators to estimate the policy and value

function. Moreover, leveraging their capacity to compact input data dimensionality, hence more complex

observations, such as images and non-linear problems, can be processed . This DRL field started with the

Deep Q-Networks (DQN) algorithm  which has exponentially increased over the last few years. Researcher

describes the catalogue of DRL algorithms, including their primary properties and classification schemes, illustrated

in Figure 2.

Figure 2. Classification of deep reinforcement learning algorithms.

Figure 2 depicts the most extended classification of DRL algorithms . The main grouping is based on the

available information about the dynamics of the environment, which determines the learning process of the agent.

On the one hand, model-based algorithms can be distinguished. These algorithms have access to information on

the environment dynamics, including the reward function, which allows the agent to estimate how the environment

will react to an action . Typically, these algorithms are integrated with metaheuristics and optimisation

techniques . Moreover, they are particularly good at solving high-dimensional problems, as reflected in Aske P.

et al. (2020)  survey. Furthermore, those methods reflect a higher sample efficiency, as reflected through

empirical  and theoretical  studies. A complete overview concerning model-based DRL is presented by

Luo, F. et al. (2022)  in their survey. Inside model-based DRL algorithms , there are two different situations

depending on if the model is known or not.

Concerning the first group, if the model is known, this knowledge is used to improve the learning process, and the

algorithm is integrated with metaheuristics, planning and optimisation techniques. However, since the environments

usually have large action spaces, the application of these techniques is highly resource demanding. Thus, a

complete optimisation of the learning process cannot be carried out. Moreover, although there are no algorithms

defined as such, except for well-known algorithms such as Alpha Zero  and Single Agent , most of them are

adapted to the application and the characteristics of the model environment. In recent years, DRL model-based

algorithms that make use of digital twin models may be highlighted, such as the algorithms presented by Matulis
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and Harvey (2021)  and Xia et al. (2021) . Therefore, in the implementation of the model-based algorithms,

the following aspects must be addressed:

In which state the planning starts;

How many computational resources are assigned to it;

Which optimisation or planning algorithm is used;

What is the relation between the planning and the DRL algorithm.

In the other group of model-based algorithms, the model of the environment is not fully known, and the algorithms

train with a learned model . Normally, a representation of the environment is extracted by using

supervised/unsupervised algorithms, which is carried out in a previous step as a model learning process .

Algorithms such as World Models  and Imagination-Augmented Agents (I2A)  belong to this group.

Nonetheless, the accuracy of the model depends on the observable information and the capacity to adapt to

changes in the model dynamics. For this reason, these algorithms are more suitable for dealing with deterministic

environments. Based on the experience acquired through the interaction with the environment, three model

approaches can be obtained :

Forward model: based on the current state and the selected action by the agent, it estimates the next state;

Backward model: a retrospective model that predicts which state and action led to the current state;

Inverse model: it assesses which action makes moving from one state to another.

On the other hand, model-free algorithms cannot anticipate the evolution of the environment after an action

because the dynamics of the environment is unknown . Thus, the algorithm estimates the most suitable action at

the current state based on the acquired experience through interaction. This latter is the most frequent scenario in

practice; hence, more algorithms exist . The model-free DRL algorithms focus on the management of acquired

experience by algorithms and how they use this information to learn a policy. This distinguishes on-policy

algorithms from off-policy algorithms . In the former case, the agent applies its policy generating short-term

experience, which frequently consists of a fixed number of transitions (trajectory) . Based on this information,

the policy is updated, and then the experience is discarded. On the other hand, off-policy algorithms have a

memory that stores the transitions created by several past policies . This memory is finite and has a memory

management method, for instance, FIFO (first-in, first-out) . In this case, the policy is updated with a sampled

batch of the stored transitions, considering the experience generated with old policies .

Although this latter classification is not exclusive to model-free algorithms, there is a certain parallelism with the two

families of model-free algorithms represented in Figure 2, policy optimisation (PO) and Q-learning families. The

first family began with the Policy Gradient algorithm and was later expanded to include the Advantage Actor Critic
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(A2C) , Asynchronous Advantage Actor Critic (A3C) , and proximal policy optimization (PPO)  algorithms.

This class of algorithms is capable of handling continuous and discrete action spaces, and the action at each state

is determined by a probability distribution. The second family was derived from Deep Q-Networks (DQN) , and

algorithms such as Quantile Regression DQN (QR-DQN)  and hindsight experience replay (HER)  belong to

it. In contrast to the other family, they can only deal with discrete action space environments, and the policy

calculates the Q-value of each state-action pair to take a decision.

Lastly, it should be highlighted that these classifications are not exclusive, and there are algorithms that integrate

features and techniques of different groups, such as the hybrid algorithms that are halfway between policy

optimisation and Q-learning families (see Figure 2). Some algorithms of this group are Soft Actor-Critic (SAC) ,

Deep Deterministic Policy Gradient (DDPG)  and Twin Delayed Deep Deterministic Policy Gradient (TD3) .

These algorithms address some of the weaknesses of the other algorithms that allow the implementation of

approaches to more complex problems. In addition, combinations of algorithms from different groups can be found

in the literature, such as DDPG + HER  and model-free and model-based algorithms .

Integration in the Industry

Manufacturing involves a set of tasks that generally entail decision making by plant operators. These tasks are

related to scheduling  (e.g., predicting the production based on future demand, guaranteeing the supply chain,

planning processes to optimise production and energy consumption); process control  (i.e., automated

processes such as assembly lines, pick-and-place and path planning); and monitoring  (e.g., decision support

systems, calibration and quality control) . As can be observed, most of these tasks are complex, and their

efficient performance needs expert knowledge and time to be programmed. In the manufacturing sector, the former

exists for many tasks, but the availability of time is limited even more if flexible production wants to be achieved

under the framework of I4.0. Moreover, for smart factories of I5.0, other factors, such as benefits for the well-being

of workers and the environment, must be considered. All in all, the automation of manufacturing tasks is a complex

optimisation problem that requires novel technologies to be addressed, such as ML. Based on a few investigations

, below the main requirements of an ML application in the industry are listed:

Dealing with high-dimensional problems and datasets with moderate effort;

Capability to simplify potentially difficult outputs and establish an intuitive interaction with operators;

Adapting to changes in the environment in a cost-effective manner, ideally with some degree of automation;

Expanding the previous knowledge with the acquired experience;

Ability to deal with available manufacturing data without particular needs for the initial capture of very detailed

information;
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Capability to discover relevant intra- and inter-process relationships and, preferably, correlation and/or

causation.

Among ML paradigms, reinforcement learning is suitable for this type of task. The trial-and-error learning through

the interaction with the environment and not requiring pre-collected data and prior expert knowledge allow RL

algorithms to adapt to uncertain conditions . Moreover, thanks to the capacity of ANNs to create simple

representations of complex inputs and functions, DRL algorithms can address complex tasks, maintaining

adaptability and robustness . Indeed, some applications can be found in manufacturing, for instance, in

scheduling tasks  and robot manipulation .

However, the application of DRL in industrial processes presents some challenges that must be considered during

the implementation. A complete list of challenges is gathered in studies such as ; however, the most common

ones perceived by the researchers in real-world implementations are described below.

Stability. In industrial RL applications, the sample efficiency of off-policy algorithms is desirable. However, these

show an unstable performance in high-dimensional problems, which worsens if the state and action spaces are

continuous. To mitigate this deficiency, two approaches predominate: (i) reducing the brittleness to

hyperparameter tuning and (ii) avoiding local optima and delayed rewards. The former can be solved by using

tools that optimise the selection of hyperparameters values, such as Optuna , or employing algorithms that

internally optimise some hyperparameters, such as SAC . The other approach can be addressed by

stochastic policies, for example, introducing entropy maximisation such as SAC and improved exploration

strategies .

Sample efficiency. Learning better policies with less experience is key for efficient RL applications in industrial

processes. This is because, in many cases, the data availability is limited, and it is preferable to train an

algorithm in the shortest possible time. As stated before, among model-free DRL algorithms, off-policy

algorithms are more sample efficient than on-policy ones. In addition, model-based algorithms have better

performance, but obtaining an accurate model of the environment is often challenging in the industry. Other

alternatives to enhance sample efficiency are input remapping, which is often implemented with high-

dimensional observations , and offline training, which consists of training the algorithm with a simulated

environment .

Training with real processes. Albeit training directly with the real systems is possible, it is very time consuming

and entails the wear and tear of robots and automatons . Moreover, human supervision is needed to

guarantee safety conditions. Therefore, simulated environments are used in practice, allowing the generation of

much experience at a lower cost and faster training. Nonetheless, a real gap exists between simulated and real-

world environments, making applying the policy learned during the training difficult .

Sparse reward. Manufacturing tasks usually involve a large set of steps until reaching their goal. Generally, this

is modelled with a zero-reward most of the time and a high reward at the end if the goal is reached . This can
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discourage the agent in the exploration phase, thus attaining a poor performance. To this end, some solutions

are aggregating demonstration data to the experience of the agent in a model-based RL algorithm to learn

better models; including scripted policies to initialise the training, such as in QT-Opt  and reward shaping

provides additional guidance to exploration, boosting the learning process.

Reward function. The reward is the most important signal the agent receives because it guides the learning

process . For this reason, clearly specifying the goals and rewards is key to achieving a successful learning

process. This becomes more complex as the task and the environment becomes more complicated, e.g.,

industrial environments and manufacturing tasks. To mitigate this problem, some alternatives are integrating

intelligent sensors to provide more information, using heuristics techniques and replacing the reward function

with a model that predicts that reward .

3. Deep Reinforcement Learning in the Production Industry

Nowadays, manufacturing industries face major challenges, such as mass customisation and shorter development

cycles. Moreover, there is a need to meet the ever-rising bar for product quality and sustainability in the shortest

amount of time through an ambiguous and fluctuant market demand . However, those challenges also open up

new opportunities for innovative technologies brought by the I4.0 and I5.0 . Among those, AI plays a special

role, and furthermore, DRL, after the outstanding results presented by OpenAI  and DeepMind , among

others, is progressively shifted to the production industry . In this sense, some of the main DRL features, such

as the adaptability and ability to generalise and extract information from past experiences, have already been

demonstrated in a few sectors, as reflected in other reviews. Among them are robotics , scheduling ,

cyber-physical systems  and energy systems .

3.1. Path Planning

In manufacturing, path planning is crucial for machines such as computer numerical control (CNC) machines 

and robot manipulation  to perform tasks such as painting, moving in space and welding, and additive

manufacturing . Moreover, path planning is part of the mobile robot navigation system that has an increasing

presence in factories . The main objective of this task is to find the optimal trajectory to move the robot or part

of it from one point in space to another while maybe performing an operation. In industrial environments, other

factors must be considered due to the features of the task or the environment or the potentially severe

consequences of a failure. These make path planning more complex, and some of the most popular ones are the

avoidance of obstacles, dynamic environments and constraints of the movements of the robots and systems.

For this application, model-free DRL algorithms are predominant, probably due to the complexity of modelling a

dynamic environment . DQN, together with its variants, is the most used one . Despite some issues,

such as overestimating q-values and instability, DQN applications are widely used in path planning. An important

task of this field is active object detection (AOD), whose purpose is to determine the optimal trajectory so that a

robot has the viewpoints that allow it to gather the necessary visual information to recognise an object. DQN is still

used for this purpose, outperforming other AOD methods. Fang et al. (2022)  recently presented a self-
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supervised DQN-based algorithm that improves the success rate and reduces the average trajectory length.

Moreover, the developed algorithm was successfully tested with a real robot arm. However, the applications of

DQN variants need to become popular in order to overcome the aforementioned drawbacks.

Prioritised DQN (P-DQN) is used to upgrade the convergence speed of DQN, assigning more priority to those

samples that contain more information in comparison with the experience . These samples are more likely to be

selected to update the parameters of the ANNs. Liu et al. (2022)  present a P-DQN-based path-planning

algorithm to address path planning in very complex environments with many obstacles. This priority assignment

can be detached, constituting a technique called priority experience replay (PER). This technique is combined with

Double DQN (DDQN) in , increasing the stability of the learning process. Moreover, DDQN also offers

satisfactory performance without PER. An example is the path planning application presented in , where the

DDQN agent is pre-trained in a virtual environment with a 2D-LiDAR and then tested in a real environment using a

monocular camera.

In line with I5.0, path planning has a challenge in robotic applications to achieve the estimation of time-efficient and

free-collision paths. In this context, crowd navigation of mobile robots can be highlighted due to the need to predict

the movement of other objects in the environment, such as humans. For this purpose, the DQN variant of Dueling

DQN in combination with an online planner proposed in  results in equivalent or even better performance of the

state-of-the-art methods (95% of success in complex environments) with less than half the computational cost.

Furthermore, based on Social Spatial–Temporal Graph Convolution Network (SSTGCN), a model-based DRL

algorithm is developed in , highlighting its robustness to changes in the environment.

Lastly, the use of hybrid DRL algorithms should be remarked on because they can work with continuous action

space and are not like DQN, which is limited to discrete spaces. For example, Gao et al. (2020)  present a

novel path planner for mobile robots that combines TD3 and the traditional path planning algorithm Probabilistic

Roadmap (PRM). PRM + TD3 is trained in an incremental way, achieving an outstanding generalisation for

planning long-distance paths. In addition, a variant of DDPG called mixed experience multi-agent DDPG (ME-

MADDPG) is applied to coordinate the displacement of several mobile robots. This algorithm enhances the

convergence properties of other DRL algorithms in this field .

3.2. Process Control

With the automation of factories, process control became a key element in manufacturing. This control is scalable

from large SCADA panels that monitor the whole production chain of a factory to specific processes . Moreover,

this manufacturing task addresses simple control operations, such as opening valves, and complex control

operations, such as coordinating several robot arms for assembling. For this purpose, control strategies have

typically been applied; however, the application of artificial intelligence methods, such as neural networks, is

growing thanks to the development of smart factories . Given the plethora of process control tasks, this section

focuses on the most recent DRL applications in this field. In addition, a subsection is dedicated to robotic control,

especially robot manipulation, due to its significant role in manufacturing .
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The literature search reflects that DRL algorithms are generally applied to control specific processes and that

model-free algorithms predominate. Since control tasks usually involve continuous variables, the algorithms from

the policy optimisation family and hybrid algorithms are the most used ones. Regarding the former, PPO is widely

applied because it is the most cutting-edge and established algorithm within the PO family. Szarski et al. (2021)

apply PPO to control the temperature in a composite curing process to reduce the cycle time . The developed

controller is tested with the simulation of a complex curing process in two realistic different aerospace parts,

reducing up to 40% of the ramp time. Moreover, this test demonstrates the controller’s applicability because it was

only trained for one of the parts. Other PPO applications can be found in other manufacturing processes, such as

controlling the power and velocity of a laser in charge of melting via powder bed fusion  and controlling the rolls

of a strip rolling process to achieve the desired flatness . It should be noted that this last application is also

compared with DRL hybrid algorithms, outperforming them regarding results and stability.

Although PPO has been applied to some control tasks, its on-policy nature generally entails larger training. Off-

policy DRL algorithms improve it thanks to being more sample efficient , and DDPG is the most popular off-

policy hybrid algorithm for control applications. This algorithm is an extension of DQN for continuous action spaces,

and it is the first off-policy algorithm for this type of space, showing positive performance in the control of complex

systems. Fusayasu et al. (2022)  present a novel application of DDPG in the control of multi-degree-of-freedom

spherical actuators, characterised by their difficult control due to their strong non-linearities of torque. DDPG

achieves a highly accurate and robust control, outperforming PID and neural network controllers. In the chemical

process control, Ma et al. (2019)  demonstrate how a DDPG controller can control a polymerisation system,

which is a complex, multi-input, non-linear chemical reaction system with a large time delay and noise tolerance. In

this case, the main adaptation of the original algorithm is the inclusion of historical experience to deal with time

delay. Another application of DDPG in the optimisation of chemical reactions is , where the maximisation of

hydrogen production through the partial oxidation reaction of methane is reached. Moreover, TD3, as an improved

version of DDPG, is also applied in this type of process, for instance, the multivariable control of a continuous

stirred tank reactor (CSTR) . The importance of DDPG and TD3 in process control in the chemical industry is

shown in , where hybrid and PO algorithms are compared for five use cases, and DDPG and TD3 outperform

all of them in all use cases.

3.3. Robotics

Robot manipulation encompasses a wide range of tasks, from assembly operations, such as screwing and peg-in-

hole, to robot grasping and pick-and-place operations . The characteristics of DRL make it very suitable for

robotic tasks, which has produced a close relationship between both fields for many years, leading to promising

results in the future .

Firstly, this research starts with the peg-in-hole assembly, the robotic manipulation task with the most DRL

applications according to the literature search, and its high precision characterises it. For this task, PPO is the most

commonly applied algorithm with applications such as . Among them, the PPO controller developed by

Leyendecker et al. (2021)  should be noted, where the algorithm is trained through curriculum learning. This
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technique consists of dividing the learning problem into several subtasks and learning them in ascending order of

complexity, which allows the learning of the simpler tasks to be used to learn the more complex ones and improves

generalisation skills .

Although PPO applications abound, other DRL algorithms can be found. For example, Deng et al. (2021) propose

an actor-critic-based algorithm that improves the stability and sample efficiency of other state-of-the-art algorithms

such as DDPG and TD3 . In addition, training this algorithm with hierarchical reinforcement learning (HRL)

notably increases the generalisation capability to other assembly tasks. HRL consists of decomposing tasks into

simpler and simpler sub-tasks, establishing levels of hierarchy in which more complex parent tasks are formed by

simpler child tasks. With this technique, the most basic tasks are learned, which allow for the development of more

complex tasks . Furthermore, among the applications of hybrid algorithms, the work of Beltran-Hernández et al.

(2020) , which uses SAC to learn contact-rich manipulation tasks and tests the algorithm with a real robot arm,

and the proposed uses of DDPG to control the force in contact-rich manipulation in  and to enhance the

flexibility of assembly lines in  are noteworthy. The latter is particular in that it uses a digital twin model of the

assembly line to train the DDPG algorithm, and once trained, this model is used to monitor the assembly lines and

predict failures during the production stage.

Digital twins are a technology that is increasingly important in I.40 and I.5.0, which seems to be crucial to the

development of smart manufacturing. Indeed, some DRL control applications, such as , leverages this

technology to increase their data efficiency and robustness. Liu et al. (2022) train a DQN algorithm with the digital

twin model of a robot arm that has to perform a grasping task . In this line, Xia et al. (2021) do the same with

DQN and DDQN + PER for a pick-and-place task . Both cases highlighted the smoother transfer of knowledge

from the simulation to the real environment thanks to digital twin models.

Finally, another robot manipulation task to which DRL is currently applied is pick-and-place, which in turn includes

other tasks such as motion planning, grasping and reaching a point in space . As in other robotic tasks, the use

of DDPG is predominant . Some recent examples are , whose objective is reaching a point and measuring

the influence of different reward functions, and , where the application of DDPG results in robust grasping in

pick-and-place operations. In addition, the joint use of DDPG and HER is common, highlighting the work of Marzari

et al. (2021), that DDPG + HER is used together with HRL to learn complex pick-and-place tasks .

Nonetheless, other state-of-the-art algorithms are used in this field, such as TD3 + HER for the motion planning of

robot manipulators  and PPO and SAC for a grasping task with an outstanding success rate . In this latter

work, it should be noted that SAC training requires fewer episodes, but they last longer.

3.4. Scheduling

The aim of scheduling is to optimise the use of time to reduce the consumption of resources in all senses, hence

improving the overall efficiency of the industrial processes. In this, several sub-objectives must be considered. It

plays an essential role within any kind of industry and has always been a significant research topic approached

from different fields. However, due to its interdisciplinary nature, the size of the problem can easily scale up.
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Consequently, the optimisation problem has multiple objectives and is usually complex given the uncertainties that

must be faced and the high interconnectivity of the elements involved . In this sense, DRL arises as an

enabling technology, as reflected in literature reviews concerning smart scheduling in the industry 4.0 framework

.

On the one hand, in order to solve the multi-objective optimisation problem, a common approach is the

implementation of multi-agent DRL algorithms. Several successful studies can be found about this in different

production sectors . Lin et al. (2019)  implemented a multi-agent DQN algorithm for a semiconductor

manufacturing industry in order to cover the human-based decisions and reduce the complexity of the problem,

resulting in enhanced performance. Through a similar approach, Ruiz R. et al. (2022)  focus on the maintenance

scheduling of several machines presenting up to ≈ 75% improvement in overall performance. Other studies

combine those algorithms with IoT devices for smart resource allocation  or with other algorithms, such as

Lamarckian local search for emergency scheduling activities . For the latter, Baer et al. (2019)  propose an

interesting approach by implementing a multi-stage learning strategy, training different agents individually but

optimising them together towards the global goal, presenting great results. On the other hand, in order to face the

increasing fluctuation in production demand and product customisation, actor-critic DRL approaches are usually

implemented .

The actor-critic approach is characterised by its robustness  and acts as an upgrade of the traditional Q-

learning, which could act as a decision-support system easing operators scheduling tasks . Through the

actor-critic approach, the policy is periodically checked and recalibrated to the situation, which highly increases the

adaptability and eases the implementation in real-time scheduling . In addition, several studies reflect that it

can be implemented with cloud-fog computing services . Furthermore, the performance can be increased

by implementing a processing approach divided into batches, as reflected in Palombarini et al. (2018, 2019)

studies . There are also some novel approaches integrating different neuronal networks that aim to cope

with complexity and expand the applications. For example, Park et al. (2020) implemented a proximal policy

optimisation (PPO) neuronal network trained with relevant information from scheduled processes, such as the

setup status .

For latter, despite the great results presented by the research, unfortunately, most of those approaches are not

adopted in a practical context. Due to the scheduling policies already established in the production industries, it is

quite complex to introduce novel approaches even if the research shows good results. Consequently, increasing

research efforts are required in this direction.

3.5. Maintenance

The maintenance objective is to reduce breakdowns and promote overall reliability and efficiency . The term

mainly refers to tasks required to restore full operability, such as repairing or replacing damaged components. It

significantly impacts the operational reliability and service life of the machinery in any industry. There are four types

of maintenance: reactive, preventive, predictive and reliability-centred . Historically, reactive maintenance
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has predominated, which was performed after the failure of the machine, mainly due to limited knowledge about

their operation and failures. Nowadays, this strategy is still in use for unpredictable failures and failures of cheap

objects. Over time, the understanding of the process has increased, and preventive maintenance has come up.

Further on, I4.0 technologies and advances in AI have enabled predictive and reliability-centred maintenance .

As part of AI advances for maintenance activities in the industry, RL algorithms play an important role due to their

self-learning capability . Moreover, the integration of neuronal networks, resulting in DRL, expands the

applications and performances even further . Their application can help anticipate failures by predicting key

parameters and also prevent failures through in-line maintenance, enlarging the lifetime of components.

The anticipation of failures is usually combined with scheduling optimisation to maximise the results . In

order to speed up the learning phase, Ong, K.S.H, et al. (2022) boards the predictive maintenance problem with a

model-free DRL conjoined with the transfer learning method to assist the learning by incorporating expert

demonstrations, reducing the training phase time by 58% compared with baseline methods . On the other

hand, Acernese, A. et al. board fault detection for a steel plant through a double deep-Q network (DDQN) with

prioritised experience replay to enhance and speed up the training .

There are also hybrid approaches, such as the one proposed by Chen Li et al. (2022) , where feedback control

is implemented based on an advantage actor-critic (A2C) RL algorithm to predict the machine status and control

the cycle time accordingly. In addition, Yousefi, N. et al. (2022), in their study, propose a dynamic maintenance

model based on a Deep Q-learning algorithm to find the optimal maintenance policy at each degradation level of

the machine’s components .

3.6. Energy Management

Nowadays, and especially with the I5.0 and worldwide policies (e.g., Paris agreement ), energy consumption

and environmental impact are in the spotlight. In this sense, AI algorithms such as DRL can boost energy efficiency

and reduce the environmental impact of the manufacturing industry . The algorithms are usually implemented

into the energy market to reduce costs and energy flow control in storage and machines operation to increase their

energy consumption effectiveness . In resource- and energy-intensive industries such as printed circuit boards

(PCB) fabrication, Leng et al. demonstrated that the DRL algorithm was able to improve lead time and cost while

increasing revenues and reducing carbon use when compared to traditional methods (FIFO, random forest) .

Lu R. et al. (2020) faced a multi-agent DRL algorithm against a conventional mathematical modelling method

simulating the manufacturing of a lithium–ion battery. The benchmark presents a 10% reduction in energy

consumption .
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