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Spiking neural networks, often employed to bridge the gap between machine learning and neuroscience fields, are

considered a promising solution for resource-constrained applications. Since deploying spiking neural networks on

traditional von-Newman architectures requires significant processing time and high power, typically, neuromorphic

hardware is created to execute spiking neural networks. The objective of neuromorphic devices is to mimic the

distinctive functionalities of the human brain in terms of energy efficiency, computational power, and robust

learning. 
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1. Introduction

In recent years, the Artificial Neural Networks (ANNs) domain has witnessed a significant adaptation of Deep

Neural Networks (DNNs) across several fields, such as machine learning, computer vision, artificial intelligence,

and natural language processing (NLP). DNNs are capable of accurately performing a wide range of tasks by

training on massive datasets . However, the energy consumption and computational cost required for training

large volumes of datasets and for deploying the resulting applications have been of less importance; thus, they

have been overlooked . The DNNs typically consume high power and require large data storage . Although

there have been significant advancements in ANNs, ANNs were unable to achieve the same level of energy

efficiency and online learning ability as biological neural networks . Drawing inspiration from brain-inspired

computing, one potential solution to address the issue of high-power consumption is to use the neuromorphic

hardware with Spiking Neural Networks (SNNs). SNNs, often considered the third generation of neural networks,

are emerging to bridge the gap between fields such as machine learning and neuroscience .

Unlike traditional neural networks that rely on continuous-valued signals, the SNNs work in continuous time . In

SNNs, the neurons communicate with each other using discrete electrical signals called spikes. Spikes model the

behavior of the neurons more accurately and more biologically plausible than ANNs, thus making SNNs more

energy efficient and computationally powerful than ANNs . The neuron models of ANNs and SNNs differ from

each other. For instance, ANNs do not have any memory and use sigmoid, tanh, or rectified linear unit (ReLU) as

computational units, whereas SNNs have memory and use non-differentiable neuron models. Typically, large-scale

SNN models consume high power and require high execution time when utilized/executed on classical Von

Neumann architectures . Hence, there is a need for high-speed and low-power hardware for executing large-

scale SNN models. In this regard, existing neuromorphic platforms, such as SpiNNaker , Loihi , NeuroGrid
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, and TrueNorth by IBM , are expected to advance the applicability of large-scale SNNs in several emerging

fields by offering energy-efficient high-speed computational solutions. SNNs have the functional similarities to

biological neural networks, allowing them to embrace the sparsity and temporal coding found in biological systems

. However, SNNs are difficult to train because of their non-differentiable neuron models. In terms of speed

performance, SNNs are inferior to DNNs. Nevertheless, due to the low power traits, SNNs are considered more

efficient than DNNs .

2. Neuromorphic Sentiment Analysis Using Spiking Neural
Networks

2.1. Spiking Neural Networks (SNNs)

As stated in , the SNNs are considered the third generation of neural networks, which communicate through a

sequence of discrete electrical events called “spikes” that takes place at a point of time. The SNN models are

generally expressed in the form of differential equations . The structure of spiking neurons in the SNN model is

similar to the structure of the ANN neuron; however, their behavior is different. SNNs are widely used in various

applications, including brain–machine interface, event detection, forecasting, and decision making .

The spiking neuron models are distinguished based on the biological plausibility and computational capabilities 

. Typically, spiking neuron models are selected based on specific user requirements. Figure 1 illustrates the

schematics of a biological neural network, ANN and SNN .

Figure 1. Schematic representations of (a) biological neural network, (b) artificial neural network, and (c) spiking

neural network.

2.2. ANN to SNN Conversion

[13] [14]

[15]

[6]

[16]

[17]

[18][19]

[20]

[21][22]

[17]



Neuromorphic Sentiment Analysis Using Spiking Neural Networks | Encyclopedia.pub

https://encyclopedia.pub/entry/49344 3/8

The ANNs are used extensively for solving several tasks in various fields, such as machine learning and artificial

intelligence. In this case, deep learning develops large neural networks with millions of neurons that span up to

thousands of layers. These large neural networks have proven to be effective while solving several complex tasks,

including video classification, object detection and recognition, etc.; however, these networks require massive

computational resources . The development of SNNs is mainly to address the challenge associated with

massive computational resources. The SNNs perform similar tasks with less computational resources and with low

energy consumption. In SNNs, all the computations are event-driven, and operations are sparse. In this case, the

computations and operations are performed only when there is a significant change in the input. Typically, training

a large SNN is a difficult task; thus, an alternative approach is to take a pre-trained ANN network and convert it into

SNNs . Existing ANN-to-SNN conversion methods in the literature primarily focus on converting ReLu to IF

neurons.

An overview of ANN-to-SNN conversion is illustrated in Figure 2. The process of converting from ANN to SNN

involves transferring the trained ANN settings that use ReLU activations to an SNN with an identical structure, as

depicted in Figure 2. This approach enables the SNN to achieve exceptional performance while requiring minimal

computational resources. Initially, the ANN model is trained with the given inputs, and the weights are saved.

Typically, traditional trained ANN models are being executed on GPUs, as illustrated in top modules in blue (in

Figure 2).

Figure 2. Overview of the ANN-to-SNN conversion.

2.3. Neuromorphic Hardware

The neuromorphic hardware for SNNs is categorized into analog, digital, or mixed-signal (analog/digital) designs

. Many neuromorphic hardware platforms with varying configurations have emerged to manage large-scale
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neural networks. From these neuromorphic platforms, fully digital and mixed-signal hardware, such as IBM

TrueNorth, NeuroGrid, BrainScaleS, Lohi, and SpiNNaker, are some of the commonly used platforms among

several applications . A detailed description of the neuromorphic hardware platforms can be found in .

Table 3 presents various features/characteristics of existing neuromorphic hardware platforms

Table 3. Characteristics of existing neuromorphic hardware platforms.

2.4. SpiNNaker

The SpiNNaker was designed by the Advanced Processor Technologies Research Group (APT), from the

Department of Computer Science at the University of Manchester . It is composed of 57,600 processing nodes,

each with 18 ARM9 processors (specifically ARM968), 128 MB of mobile DDR-SDRAMs, totaling 1,036,800 cores,

and over 7 TB of RAM . The SpiNNaker is an SNN architecture designed to simulate large-scale SNNs. The

main component of the SpiNNaker system is the SpiNNaker chip, whose main focus is to provide the required

scalability and flexibility to perform experiments with neuron models. Based on brain-inspired computing, the

objective of the SpiNNaker system is to design the neural architecture model of the human brain which is made up

of approximately 100 billion neurons connected by trillions of synapses . The SpiNNaker machine is a collection

of low-power processors, which can simulate/execute a small number of neurons and synapses in real time. In this

case, all the processors are interconnected by a high-speed network . The high-speed network allows the
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processors to communicate with each other, while distributing the computation load for simulating a large neural

network. The main advantage of the SpiNNaker system is its ability to simulate large-scale neural networks using

an asynchronous scheme of communication , which is essential for testing brain functions and developing

new neural network applications in areas such as robotics, machine learning, and artificial intelligence. The

SpiNNaker system is indeed an exciting creation in the field of neural networks, and it has the potential to greatly

advance the understanding of the brain and the information processing of the brain .

2.4.1. Architecture of SpiNNaker Chip

As stated in , the SpiNNaker chip has 18 cores coupled with an external RAM controller and a Network-on-Chip

(NoC). Each core comprises an ARM968 processor, a direct memory access controller, a controller for

communications, a network interface controller, and other peripherals, including a timer . Every core in the

SpiNNaker chip runs given applications by simulating/executing a group of neurons at 200 MHz. Each core also

comprises 96 kB of tightly coupled memory (TCM). In order to avoid any contention issues, this TCM is split into

two: 64 kB for data (DTCM), and 32 kB for instructions (ITCM). The DTCM consists of application data, including

zero-initialized data, heap, stack, and read/write. Each chip in the SpiNNaker system has 128 MB of shared

memory (i.e., SDRAM), which is directly accessible by all cores in the SpiNNaker chip . In this case, the memory

access time varies significantly when accessing the different memories mentioned above. Hence, the following

should be considered when designing applications for the SpiNNaker system.

Faster access to DTCM at ≈5 ns/word. DTCM is only limited to the local core.

Access to SDRAM via a bridge. Accessing SDRAM could lead to a contention issue, since more than one core

in the SpiNNaker chip could attempt to access. This is a slow process with >100 ns/word.

As a result, each core encompasses a direct memory access (DMA) controller, which is used to enable bulk

transfer of data from the SDRAM core to DTCM efficiently. Although the DMCA setup introduces a fixed

overhead, the data are still transferred from the processor independently at ≈10 ns/word.

The SpiNNaker is a large-scale parallel network, comprising low-power and energy-efficient processors connected

by a network. Each node in the network is responsible for simulating/executing a small number of neurons and

synapses . Each node in the network communicates with every other node to exchange information and

distribute the computation load. Each node in the network consists of processors, memory, I/O interfaces and core.

Every node in the SpiNNaker architecture is constructed from one or more SpiNNaker boards, which are made up

of SpiNNaker chips . Currently, two production versions called SpiNN-3 and SpiNN-5, each of which has 4 and

48 chips, respectively, are available.

2.4.2. Components of SpiNNaker System

The architecture of the SpiNNaker system consists of the following four major components .
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Processing nodes: are the individual processors used to simulate/execute the behavior of artificial neurons and

synapses.

Interconnect fabric: is a high-speed network used to connect the processing nodes together. Interconnect fabric

allows efficient communication between the nodes, as well as efficient load distribution across the network.

Host machine: is a separate master computer/processor used to configure and control the SpiNNaker system.

The host machine constantly communicates with the processing nodes via the network interface. The host machine

also provides a user interface to set up and run the simulations.

Software stack: consists of a variety of software components that work together to enable the

simulation/execution of neural networks on the SpiNNaker system. This software stack includes the operating

system running on the processing nodes, higher-level software libraries, and tools for configuring and running the

simulations.

2.5. PyNN

In , the authors introduced PyNN, which is a python interface used to define the simulations after creating the

SNN model. The simulations are typically executed on the SpiNNaker machine via an event-driven operating

system . Using a python script, PyNN allows users to specify the SNN simulations for executions. In this case,

NEST, Neuron, INI, Brian, and SpiNNaker are commonly used SNN simulators.

2.6. Sentiment Analysis Using Natural Language Processing

Sentiment analysis is a natural language processing (NLP) technique that is commonly used to identify, extract,

and quantify subjective information from text data . Sentiment analysis is mainly used to analyze the text and

determine the sentiment score. The sentiment score can range from −1 (indicating very negative sentiment) to +1

(indicating very positive sentiment), with 0 representing the neutral sentiment . Using deep-learning-based

approaches to perform sentiment analysis in NLP is a popular research area. Sentiment analysis is widely

employed across various fields, such as marketing, finance, and customer service, to name a few . Sentiment

analysis can also be used to analyze financial news and social media to predict stock prices or market trends .

However, with the ongoing increase in data sizes, novel and efficient models (for sentiment analysis) are needed to

manage and process the massive amount of data . Although the existing ANN models provide the required

accuracy while classifying the data, the ANN models are not efficient in terms of energy consumption and speed-

performance .
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