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Spiking neural networks, often employed to bridge the gap between machine learning and neuroscience fields, are
considered a promising solution for resource-constrained applications. Since deploying spiking neural networks on
traditional von-Newman architectures requires significant processing time and high power, typically, neuromorphic
hardware is created to execute spiking neural networks. The objective of neuromorphic devices is to mimic the
distinctive functionalities of the human brain in terms of energy efficiency, computational power, and robust

learning.

neuromorphic computing artificial neural network natural language processing

| 1. Introduction

In recent years, the Artificial Neural Networks (ANNs) domain has witnessed a significant adaptation of Deep
Neural Networks (DNNs) across several fields, such as machine learning, computer vision, artificial intelligence,
and natural language processing (NLP). DNNs are capable of accurately performing a wide range of tasks by
training on massive datasets [X. However, the energy consumption and computational cost required for training
large volumes of datasets and for deploying the resulting applications have been of less importance; thus, they
have been overlooked 2B, The DNNs typically consume high power and require large data storage 42, Although
there have been significant advancements in ANNs, ANNs were unable to achieve the same level of energy
efficiency and online learning ability as biological neural networks 8. Drawing inspiration from brain-inspired
computing, one potential solution to address the issue of high-power consumption is to use the neuromorphic
hardware with Spiking Neural Networks (SNNs). SNNs, often considered the third generation of neural networks,

are emerging to bridge the gap between fields such as machine learning and neuroscience .

Unlike traditional neural networks that rely on continuous-valued signals, the SNNs work in continuous time &, In
SNNs, the neurons communicate with each other using discrete electrical signals called spikes. Spikes model the
behavior of the neurons more accurately and more biologically plausible than ANNs, thus making SNNs more
energy efficient and computationally powerful than ANNs . The neuron models of ANNs and SNNs differ from
each other. For instance, ANNs do not have any memory and use sigmoid, tanh, or rectified linear unit (ReLU) as
computational units, whereas SNNs have memory and use non-differentiable neuron models. Typically, large-scale
SNN models consume high power and require high execution time when utilized/executed on classical Von
Neumann architectures 19, Hence, there is a need for high-speed and low-power hardware for executing large-

scale SNN models. In this regard, existing neuromorphic platforms, such as SpiNNaker 11 | oihi 2, NeuroGrid
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(23] and TrueNorth by IBM 24l are expected to advance the applicability of large-scale SNNs in several emerging
fields by offering energy-efficient high-speed computational solutions. SNNs have the functional similarities to
biological neural networks, allowing them to embrace the sparsity and temporal coding found in biological systems
(15 However, SNNs are difficult to train because of their non-differentiable neuron models. In terms of speed
performance, SNNs are inferior to DNNs. Nevertheless, due to the low power traits, SNNs are considered more
efficient than DNNs 8],

2. Neuromorphic Sentiment Analysis Using Spiking Neural
Networks

2.1. Spiking Neural Networks (SNNs)

As stated in [28], the SNNs are considered the third generation of neural networks, which communicate through a
sequence of discrete electrical events called “spikes” that takes place at a point of time. The SNN models are
generally expressed in the form of differential equations 4. The structure of spiking neurons in the SNN model is
similar to the structure of the ANN neuron; however, their behavior is different. SNNs are widely used in various

applications, including brain-machine interface, event detection, forecasting, and decision making (18119,

The spiking neuron models are distinguished based on the biological plausibility and computational capabilities 2%
(21122 Typically, spiking neuron models are selected based on specific user requirements. Figure 1 illustrates the

schematics of a biological neural network, ANN and SNN 221,
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Figure 1. Schematic representations of (a) biological neural network, (b) artificial neural network, and (c¢) spiking

neural network.

2.2. ANN to SNN Conversion
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The ANNSs are used extensively for solving several tasks in various fields, such as machine learning and artificial
intelligence. In this case, deep learning develops large neural networks with millions of neurons that span up to
thousands of layers. These large neural networks have proven to be effective while solving several complex tasks,
including video classification, object detection and recognition, etc.; however, these networks require massive
computational resources [23/24125126] The development of SNNs is mainly to address the challenge associated with
massive computational resources. The SNNs perform similar tasks with less computational resources and with low
energy consumption. In SNNSs, all the computations are event-driven, and operations are sparse. In this case, the
computations and operations are performed only when there is a significant change in the input. Typically, training
a large SNN is a difficult task; thus, an alternative approach is to take a pre-trained ANN network and convert it into
SNNs . Existing ANN-to-SNN conversion methods in the literature primarily focus on converting RelLu to IF

neurons.

An overview of ANN-to-SNN conversion is illustrated in Figure 2. The process of converting from ANN to SNN
involves transferring the trained ANN settings that use ReLU activations to an SNN with an identical structure, as
depicted in Figure 2. This approach enables the SNN to achieve exceptional performance while requiring minimal
computational resources. Initially, the ANN model is trained with the given inputs, and the weights are saved.

Typically, traditional trained ANN models are being executed on GPUs, as illustrated in top modules in blue (in
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Figure 2. Overview of the ANN-to-SNN conversion.

2.3. Neuromorphic Hardware

The neuromorphic hardware for SNNs is categorized into analog, digital, or mixed-signal (analog/digital) designs

(271, Many neuromorphic hardware platforms with varying configurations have emerged to manage large-scale

https://encyclopedia.pub/entry/49344 3/8



Neuromorphic Sentiment Analysis Using Spiking Neural Networks | Encyclopedia.pub

neural networks. From these neuromorphic platforms, fully digital and mixed-signal hardware, such as IBM
TrueNorth, NeuroGrid, BrainScaleS, Lohi, and SpiNNaker, are some of the commonly used platforms among

several applications [28. A detailed description of the neuromorphic hardware platforms can be found in 28],
Table 3 presents various features/characteristics of existing neuromorphic hardware platforms

Table 3. Characteristics of existing neuromorphic hardware platforms.

Chip Neuron Synapse .
Platform Tec(hr::::‘l)o 9 Electronics Area I\Il\:ggzr I?e';ﬁ‘?r"p Number sl\yn':)z%sle Number Lg:rl:1?2 Power
(mm?) 9 (chip) (Chip) g
. 65 mW
TrueNorth ASIC- - 1 Binary 4
] CMOS 28 R 430 LIF No Million modulators 256 M No (pgr
chip)
. 2 kW
. ASIC- Adaptive . .
Braln%cales CMOS Analog/Digital 50 exponential No Sil2 Splkl'ng i 100 K Yes per
digital module
180 IF
(peak)
) ASIC- Adaptive
NeuroGrid CMOS  Analog/Digital 168  Quadratic No 65,000 S 100M  Yes  27W
dendrite
180 IF
Loihi ASIC- (Iv?;
9l CMOS Digital 60 LIF o 131,000 N/A 126 M Yes 0.45 W
plasticity
14 nm
rule)
SpiNNaker ~ ASIC HF (s ﬁff tic Lw
- cMOS Digital 102 LZH YNapic 16,000  Programmable 16 M Yes (per
plasticity .
130 nm HH chip)
rule)
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of low-power processors, which can simulate/execute a small number of neurons and synapses in real time. In this

case, all the processors are interconnected by a high-speed network 2. The high-speed network allows the
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