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Hybrid inspection robots have been attracting increasing interest in recent years, and are suitable for inspecting
long-distance overhead power transmission lines (OPTLs), combining the advantages of flying robots (e.g., UAVS)
and climbing robots (e.g., multiple-arm robots). Due to the complex work conditions (e.g., power line slopes,
complex backgrounds, wind interference), landing on OPTL is one of the most difficult challenges faced by hybrid

inspection robots.

FPLIR autonomous landing Hybrid inspection robots

| 1. Introduction

Overhead power transmission lines (OPTLs), as a key component of the state grid infrastructure, is a primary
means for the long-distance transmission of electric power, contributing significantly to the economic development
of a stable nation. Due to their passage through harsh environments (e.g., deserts, mountains, forests, and rivers),
OPTLs are easily affected by material deterioration, electrical flashover, and constant mechanical tension W23, To
efficiently and reliably transmit high-voltage electric power, OPTLs need to be routinely inspected for early fault
detection . In the US, the average cost of a half-hour blackout for medium and large industrial customers is USD
15,707, while it is nearly USD 94,000 for an 8 h interruption. Additionally, the growing global population and the
over-reliance on electricity supply have created great demand for more efficient transmission line inspection

strategies B,

The original inspection method for OPTLs was human inspection, which requires inspectors to climb along the
power line to detect faults. This is laborious, inefficient, and dangerous for inspectors [; therefore, robots have
become important tools for OPTL inspection over the past three decades . Currently, many studies focus mainly
on climbing robots (e.g., multi-arm robots) and flying robots (e.g., UAVs). Climbing robots are suitable for short-
distance inspections with heavier payloads, providing detailed and reliable inspection data due to being closer to
the power lines. Nevertheless, bypassing large obstacles and landing on overhead power lines present great
difficulties. Flying robots are flexible, low cost, and capable of collecting high-quality images. However, they are

limited in terms of flight endurance and cannot accurately inspect OPTLs from close distances [QILA11]

Hybrid robots have been a focus of attention in recent decades, combining the advantages of climbing robots with
those of flying robots. They are suitable for long-distance inspections with more flexibility. The flight mechanism can

land on power lines and fly over obstacles, while the walking mechanism can walk along the OPTLs 1213l The
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existing landing methods of hybrid robots only allow the robots to approach power lines from the top 22I[14J15][16] g
the bottom LAUI8ILA  However, these hybrid robots are unstable when walking on power lines due to their
mechanical structure. In addition, power lines are flexible cable structures with slopes; when hybrid robots land on
power lines, they may slip or lose control. As a result, autonomous landing methods for the developed FPLIR
should be investigated to ensure safe landing on power lines. This challenge can be broken down into four main
issues: (1) identify power lines in the observable space; (2) estimate the status of the robot using the onboard
sensors; (3) plan a trajectory that satisfies the dynamic constraints of the robot; (4) track the trajectory under the
work conditions 141,

| 2. Power Line Detection

The existing image-based methods for power line detection can be divided into traditional and deep-learning-based
methods, as listed in Table 1. Traditional methods have focused on low-level local features, such as gradient,
luminance, texture, and other prior information. Power lines are assumed to be straight lines or polynomial curves
with the lowest intensity in the image and parallel to each other. Yan et al. 29 adopted Radon transform to extract
line segments, and then connected the segments into the whole line using the grouping method and the Kalman
filter. Li et al. 21 proposed a knowledge-based power line detection method using the Pulse Coupled Neural
Network (PCNN) to remove background noise from the images. Yang et al. 22 proposed an adaptive thresholding
approach, Hough transforms and the Fuzzy C-Means (FCM) clustering algorithm for power line detection, removing
spurious lines using the properties of power lines. Cerén et al. 23 proposed a method called Circle-Based Search
(CBS) for detecting power lines by searching for lines between two opposite points. Song et al. 24 proposed a
sequential local-to-global power line detection method based on a graph-cut model. However, the limitations of
these methods are still obvious when applied to a real environment. For instance, manually tuning dozens of
parameters makes it difficult to achieve the optimal result for each image during the inspection. Thus, when the

parameters are fixed, the methods tend to produce more false positives and negatives on a dataset.

Table 1. Summary of the literature related to power line detection.

MGICE Author/Method Advantages Limitations
Category
.y Yan etal. 29, Ljetal. [21], Simple model, fast and . .
Traditional [22] . . Low noise resistance, low
method Yang et al. <€, Ceron et al. automatic, low data extraction ACCUrac
(23] song et al. [24] requirements y

Holistically Nested Edge

Deeb learning- Detection 23], DeepContour Diverse use of information, Complex model, high data
basgd metho% (26 DeepEdge &1 high scene applicability, high requirements, low
Zhang et al. 281, Madaan et extraction accuracy extraction efficiency
al. 22

Deep learning-based methods have a strong ability to learn multiscale features and perceive global information,
R@tﬁgﬁﬁﬁ%%duce high-level representations of objects in natural images. State-of-the-art CNN-based edge
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methods (e.g., Hough transform). Zhang et al. 28] developed an accurate power line detection method using
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cosbp'f@af;aggagrucial for FPLIR due to payload limitations and the need for real-time detection. The STDC-Seg

[321331(34] s uysed to address this problem, as it is able to provide real-time semantic segmentation with low-

édn\%Hﬁn%'éc% Qn%igﬁ%c§uia%§?°’ H.; Li, S.; Xu, Q.; Liu, B.; Wang, Q.; Wang, Z.; Ma, Y. Design and
application of inspection system in a self-governing mobile robot system for high voltage

I iansmjsion line inspection._In Prg:ee ings of the 2009 Asia-Pacific Power and Energy

nfRebotLanding Method 7 o1 varch 2000: pp. 1-4.
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Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena,
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the UAV landing on the power line from above. It was semi-automatic. Ramon-Soria et al. [£2! used position-based
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1GR9 MRTEIS o FRUIRGNZ RYeEXINgSn, M. A novel autonomous navigation approach for UAV
power line inspection. In Proceedings of the 2017 IEEE International Conference on Robotics and
I R0 O BRO AR R0, B Shehber A0S, B324yied backsiepping noriinear
controller, which permitted multi-rotor UAVs to land on a moving platform. Wang et al. 1 used a hybrid of the
1a2/Mmed, M.F.; Mohanta, J.; Sanyal, A.; Yaday, P.S. Path Planning of Unmanned Aerial Systems for

Visual Inspection of Power Transmission Lines and Towers. IETE J. Res. 2023, 1-21.
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