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Reactive oxygen species (ROS) are a class of highly reactive free radicals, such as hydroxyl radical ( OH), the

superoxide radical (O ) and hydrogen peroxide (H O ). The high intracellular ROS level-induced oxidative stress

leads to the upregulation of antioxidant capacity to maintain redox homeostasis by metabolic rerouting or activation

of genetic programs.

reactive oxygen species  oxidative stress  cancer therapy

1. Introduction

Redox homeostasis is essential for biological function and its disturbance leads to profound pathophysiological

consequences in cells, which emphasize the balance between the relative abundance of reactive oxygen species

(ROS) and antioxidants . However, cells may generate excessive ROS as an unavoidable result of alterations

in metabolic signaling pathways . Oxidative stress arises when ROS are excessively produced, while

antioxidants are relatively insufficient. The ROS levels are tightly regulated by antioxidant systems, including

enzymatic antioxidant and nonenzymatic antioxidant systems. To accommodate oxidative stress, cells modify

metabolic and genetic reprogramming, thereby leading to increased production of NADPH, glutathione (GSH, l-γ-

glutamyl-l-cysteinyl-glycine), superoxide dismutases (SODs) and thioredoxins (TRXs), returning ROS to

homeostatic levels .

When the high ROS level exceeds non-toxic doses, ROS may cause oxidative damage to macromolecules, such

as nucleic acids, proteins, lipids and glucose, resulting in fragmentation of enzymes and structural proteins,

membrane damage, gene mutations and even pro-oncogenic signaling activation . Increased oxidative stress

can initiate tumor development and contribute to tumor progression by directly oxidizing macromolecules or

oxidative stress-caused aberrant redox signaling , demonstrating that high ROS levels may increase the risk of

cancer when antioxidant systems are insufficient to protect cells from oxidative stress. Since oxidative stress plays

an important role in carcinogenesis and cancer progression , it is an attractive idea to use antioxidants for

the treatment of cancer. Numerous antioxidants were developed in the past few decades. They can be classified as

nonenzymatic antioxidants, such as NF-E2 p45-related factor 2 (NRF2) activators , vitamins ,  N-

acetylcysteine (NAC) and GSH esters , and enzymatic antioxidants, such as NADPH oxidase (NOX)

inhibitors  and SOD mimics . Some of them have shown potential to act as anticancer drugs and multiple

antioxidant therapeutic strategies were explored in pre-clinical and clinical research .

•

2
•−

2 2

[1][2][3]

[4][5]

[6][7][8]

[9][10]

[11]

[2][12][13]

[14] [15]

[16][17]

[18] [19]

[20]



The Biological Basis for Antioxidant Therapy | Encyclopedia.pub

https://encyclopedia.pub/entry/24824 2/11

2. Redox Homeostasis: The Biological Basis for Antioxidant
Therapy

ROS are a class of highly reactive free radicals, such as hydroxyl radical ( OH), the superoxide radical (O ) and

hydrogen peroxide (H O ) . The high intracellular ROS level-induced oxidative stress leads to the

upregulation of antioxidant capacity to maintain redox homeostasis by metabolic rerouting or activation of genetic

programs . Disruption of redox homeostasis contributes to multiple human diseases, including cancer, and

resetting redox homeostasis with antioxidants is a promising strategy to prevent tumorigenesis or inhibit cancer

progression. It is well known that redox homeostasis is balanced by the equilibrium of ROS generation and ROS

elimination. Therefore, the underlying mechanisms that regulate the cellular redox homeostasis would be first

described (Figure 1).

Figure 1. Generation and elimination of ROS in mammalian cells. ROS are generated extracellularly by NADPH

oxidase (NOX) or intracellularly in different subcellular compartments, including endoplasmic reticulum (ER),

peroxisome, nucleus as well as the mitochondrial electron transport chain (ETC). Antioxidant systems include the

peroxiredoxin (PRDX), the glutathione peroxidase (GPX) and catalase (CAT) in the cytosol or mitochondria, which

hydrolyze H O  to H O.

2.1. Mechanisms in ROS Generation

ROS are prominently generated by transmembrane NOXs and other various oxidases from the mitochondrial

electron transport chain (ETC) , endoplasmic reticulum (ER)  and peroxisomes , in response to

intracellular signaling and extracellular stimuli. The mitochondrion functions as a highly dynamic organelle and an
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essential endogenous enzymatic source of ROS, which generates ROS through ETC, a series of electron transfer

complexes located on the mitochondrial inner membrane . The production of mitochondrial ROS is

associated with the metabolism of glucose, fatty acids and amino acids (via glycolysis, β-oxidation and oxidative

deamination, respectively), which provide precursors for tricarboxylic acid (TCA) cycle to produce metabolic

substrates that enter the ETC . In the mitochondrial ETC, ROS generation is probably due to the leak of

electrons from complex I, II and III. During this process, oxygen is reduced with a single electron and thus

generating O , which can be dismutated to H O   . The rate of ROS generation from the mitochondrial ETC

is predominantly dependent on the concentration of the one-electron donor and the reaction rate between the

donor and oxygen. The primary function of NOXs is to produce ROS, which is triggered by a variety of factors and

reported to be associated with tumor development . The NOX family consists of seven members, namely NOX1,

NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 . They catalyze the conversion of oxygen to O   by

transferring electrons to molecular oxygen in various subcellular compartments, such as the nucleus . NOXs-

derived ROS might activate the downstream secondary oxidase systems, such as xanthine oxidase and uncoupled

endothelial nitric oxide synthase, further aggravating oxidative stress and accelerating the development of cancer

. ER is a protein-folding factory, which plays an important role in normal physiology . The oxidizing site in

ER supports the proper conformation and post-translational modifications of nascent proteins . In response to

the aggregation of unfolded or misfolded proteins within ER, glucose-regulated protein 78 (GRP78) dissociates

from ER stress receptors, such as activating transcription factor 6 (ATF6), pancreatic ER kinase (PKR)-like ER

kinase (PERK) and inositol-requiring enzyme 1 (IRE1), leading to ER stress and eventually resulting in ROS

accumulation . In addition, the release of calcium from the ER and depolarization of the mitochondrial

inner membrane can stimulate the production of mitochondrial ROS and mediate excessive oxidative stress .

As multifunctional dynamic organelles, peroxisomes exist in almost all eukaryotic cells and play essential roles in

redox homeostasis . The name of peroxisomes derives from their function in the metabolism of H O   .

Peroxisomal respiration accounts for approximately 20% of total oxygen consumption and produces up to 35% of

total H O  by peroxisomal oxidases in certain mammalian cells . For instance, peroxisomal oxidase acyl-CoA

oxidase 1 (ACOX1), the rate-limiting enzyme in fatty acid β-oxidation, can oxidize very long-chain fatty acid

(VLCFA) and lead to H O   production in peroxisomes. In addition, a gain-of-function mutation in ACOX1 may

further enhance the ROS levels . Besides, the ACOX1-induction of ROS production was demonstrated to be

involved in oxidative DNA damage and the progression of hepatocellular carcinoma (HCC) . Ultraviolet (UV)

radiation is also an important factor that contributes to ROS generation and subsequent carcinogenesis . Cells

exhibit an increased production of ROS when exposed to UV radiation. UV-induced transition-type mutations at

dipyrimidine sites frequently occur in the RAS oncogene and p53 tumor suppressor gene . In addition, a wide

range of biological phenomena, such as inflammatory and oxidative modifications of macromolecules, were

reported to participate in UV-induced skin carcinogenesis and the progression of glioblastoma .

2.2. ROS Elimination with Enzymatic or Nonenzymatic Antioxidant System

Increased accumulation of ROS can be eliminated by various enzymatic antioxidant systems including SODs ,

GSH peroxidases (GPXs) , peroxiredoxins (PRDXs) , paraoxonase (PONs) and catalase (CAT) .

Additionally, ROS can also be eliminated by nonenzymatic antioxidant systems, such as GSH  and TRXs .
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The antioxidant systems counteract ROS-mediated damage to maintain ROS homeostasis, enabling tumor cell

survival .

The enzymatic antioxidant system mainly consists of SODs, PRDXs, CAT, PONs and GPXs. Under oxidative

stress, these antioxidant enzymes are upregulated or activated to prevent oxidative damage. SODs catalyze the

conversion of O  into molecular oxygen and H O , thus controlling the levels of ROS and limiting their potential

toxicity . Since SOD1 was firstly discovered in 1969, all of the three members in the SOD family were

biochemically and molecularly characterized in mammalian cells, including Cu/Zn-SOD (SOD1), Mn-SOD (SOD2)

and EC-SOD (SOD3) . SOD1 and SOD2 localize in cytosol, the mitochondrial inter membrane space, the

nucleus and the mitochondrial matrix, while SOD3 is secreted into the extracellular space . The SOD

family constitutes the first line of defense against ROS. The O  is dismutated by SODs to form H O , which can

be decomposed into O   and H O by CAT or GPXs . Several enzymes, such as glutathione reductase and

glucose-6-phosphate dehydrogenase, function as secondary antioxidant enzymes that enable GPX to function with

cofactors (NADPH, GSH and glucose 6-phosphate) but not to act on ROS directly . PON2 is one member of

the PON family that consists of three members, namely PON1, PON2 and PON3. PON2 is a membrane-

associated protein that is located in the plasma membrane, mitochondria and ER . It was reported that PON2

protects against oxidative stress, both in vivo and in vitro . For instance, PON2 binds with high affinity to

coenzyme Q10 and protects against mitochondrial dysfunction when localized to the mitochondria, while PON2

deficiency results in mitochondrial oxidative stress .

Nonenzymatic antioxidants are non-catalytic small molecules that can quench ROS and reduce oxidative stress

. The most abundant nonenzymatic antioxidant is GSH, a tripeptide composed of glutamate, cysteine and

glycine. Its synthesis is regulated by glutaminases (GLS1 and GLS2), the cystine-glutamate antiporter xCT

(SLC7A11), the GSH biosynthetic rate-limiting enzyme glutamate-cysteine ligase (GCL) and the GSH synthetase

(GSS) . GCL is a heterodimeric holoenzyme that is composed of catalytic (GCLC) and modifier (GCLM)

subunits; the expression levels of GCLC and GCLM are highly associated with the drug sensitivity of cancer cells

and patient survival . Moreover, the silencing of SLC7A11, GCLC and GSS represses the proliferation of clear

cell renal cell carcinoma by decreasing the cellular GSH levels. However, reduced levels of GSH were also

observed in patients with breast or colon cancers, especially in the advanced stages of these diseases, indicating

the essential role of GSH in cancer cell survival . Another nonenzymatic antioxidant is the TRX system, which

is composed of TRXs and NADPH-dependent thioredoxin reductase (TrxR), which participate in the removal of

harmful and excessive H O   . There are two kinds of TRXs in mammalian cells, known as cytosolic TRX1 and

mitochondrial TRX2 . TRXs directly donate electrons to thiol-dependent PRDXs to remove H O  Oxidized TRXs

are then reduced by TrxR, with NADPH as a cofactor . Moreover, the oxidized PRDXs can also be reduced by

TRXs . Given the important role of the TRX system in cellular redox homeostasis, disturbance in the TRXs’

metabolism is highly associated with the progression and chemoresistance of multiple tumors , thus making

TRXs essential targets for anticancer therapy.
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