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Metal–organic frameworks (MOFs) are crystalline porous materials composed of metal ions or clusters coordinated

with organic linkers. Due to their extraordinary properties such as high porosity with homogeneous and tunable in

size pores/cages, as well as high thermal and chemical stability, MOFs have gained attention in diverse analytical

applications. 
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1. Introduction

The terminology of metal–organic frameworks (MOFs) was initially introduced in 1995, when Yaghi and Li reported

the synthesis of a new “zeolite-like” crystalline structure upon the polymeric coordination of Cu ions with 4,4′-

bipyridine and nitrate ions, resulting to large rectangular channels . MOFs are known to have superior

characteristics, such as high surface area (theoretically up to 14.600 m g ) , porosity of uniform in structure and

topology nanoscaled cavities, and satisfactory thermal and mechanical stability. Therefore, metal–organic

frameworks were established as successful candidates for various applications like environmental remediation,

detoxification media of toxic vapors, heterogeneous catalysis, gas storage, imaging and drug delivery, fuel cells,

supercapacitors, and sensors .

In the field of analytical chemistry, MOFs have been employed in various analytical sample preparation methods

including solid-phase extraction (SPE), dispersive solid-phase extraction (d-SPE), magnetic solid-phase extraction

(MSPE), stir bar sorptive extraction (SBSE), and pipette tip solid-phase extraction (PT-SPE) . Metal–

organic frameworks have been also tested as stationary phases for high-performance liquid chromatography

(HPLC), capillary electrochromatography (CEC), and gas chromatography (GC) with many advantages. Moreover,

with the use of chiral MOFs, separation of chiral compounds has been also reported .

Metal–organic frameworks have been synthesized and successfully applied for the preconcentration of heavy

metals from environmental samples prior to their detection/analysis with a spectroscopic technique. The most

common metal ions used in MOFs are Zn(II), Cu(II), Fe(III), and Zr(IV), while terephthalic acid, trimesic acid, or 2-

methylimidazole have been excessively used as organic linkers . Many efforts have been made in order to

overcome the low water stability of MOFs toward the preparation of suitable sorbents for the extraction of metal
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ions . Compared with other sorbent materials, MOFs have a significant advantage of stable and homogeneous

pores of specific sizes .

The effect of trace heavy metals on human health has attracted worldwide attention. Their increasing industrial,

domestic, agricultural, and technological utilization has resulted in wide distribution in the environment. Metals such

as cadmium, lead, mercury, chromium, and arsenic are considered as systemic toxicants and it, therefore, is

essential to determine their levels in environmental samples . Among the different analytical techniques that are

widely used for the determination of metal ions are flame atomic absorption spectroscopy (FAAS), electrothermal

atomic absorption spectroscopy (ETAAS), inductively coupled plasma optical emission spectrometry (ICP-OES),

and inductively coupled plasma mass spectrometry (ICP-MS) .

Due to the low concentrations of metals and the presence of various interfering ions in complex matrices, the direct

determination of such ions at trace levels is still challenging. Various novel materials including graphene oxide,

activated carbon, carbon nanotubes, porous oxides, and metal–organic frameworks have been successfully

employed for this purpose .

2. Stability of MOFs in Aquatic Environment

The stability of the framework in aqueous solutions depends on the strength of the metal–ligand coordination

bonds . The collapse of MOFs in the presence of water is linked to the competitive coordination of water and the

organic linkers with the metal ions/nodes. The stability of the structure is also associated with other factors like the

geometry of the coordination between metal-ligand, the surface hydrophobicity, the crystallinity, and the presence

of defective sites . The use of additives like graphite oxide, graphitic carbon nitride, nanoparticles, or the

deposition on substrates such as carbon, fibers, or textiles, can have a positive effect on the framework stability 

. In order to evaluate the stability and as a result the properness of utilizing a MOF for adsorption

application, the pH and the temperature under which the preconcentration of the metal will take place, must be

considered.

The strength of the coordination between the organic moieties and the metal ions can be described in general

according to the HSAB (hard/soft acid/base) principles . Zr , Fe , Cr , and Al  are regarded as hard acidic

metal ions, while Cu , Zn , Ni , Mn , and Ag  as soft ones . On the other hand, carboxylate-based linkers

act as hard bases, while azolate ligands (such as pyrazolates, triazolates, or imidazolates) as soft bases. For that

reason, most of the Zr-based UiO (University of Oslo) and MIL-53(Fe) (Material Institut Lavoisier) series possess

remarkable water stability, while for instance one of the most known and studied MOF, HKUST-1 (Hong Kong

University of Science and Technology) does not. On representative paradigm of Zn-based water-stable structure is

the zeolitic imidazolate framework (ZIF), formed from imidazolate ligands and Zn .

When used in analytical chemistry, MOFs must be stable both under adsorption and under desorption conditions.

Usually, adsorption of metal ions takes place under weakly acidic conditions (pH = 5–6), while desorption is

performed predominately with the addition of a strong acid. However, even though many MOFs are stable under
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adsorption conditions, they are decomposed with the addition of strong acids like nitric, hydrochloric, and sulfuric

acid . Other reagents that have been employed for the elution of metal ions without decomposing the MOF

material are ethylenediaminetetraacetic acid (EDTA), sodium chloride (NaCl), or sodium hydroxide (NaOH) solution

in EDTA or in thiourea.

3. Mechanisms of Metal Ions Extraction with Metal–Organic
Frameworks

MOFs, as well as their composites, have been successfully applied as adsorbents for various heavy

metal/metalloid species. The adsorption of the latter from aquatic environments is still among the ultimate research

targets, and there are plenty of reports in which adsorption/removal of heavy metals was a success story .

Although, not all MOFs are water-stable as discussed above. The most widely reported interactions/mechanisms

are collected in Figure 1 . In many cases, more than one mechanism is responsible for the high adsorptive

capability of MOFs. The binding/interaction sites can be either the metal or the clusters as well as the linkers. In

order to enhance the adsorptive capability and/or selectivity, the functionalization of the linkers, with groups as

hydroxyl, thiol, or amide, is a well-explored and successive strategy.

Figure 1. A schematic illustration of the interactions/mechanisms involved in the adsorption of metals by metal–

organic frameworks (MOFs).

Lewis acid–base interactions are the most common adsorption mechanism of metal ions by metal–organic

frameworks . The presence of O-, S-, and N-containing groups that act as Lewis bases is very important for the

preconcentration of the various ionic species from aqueous solution since metal ions act as Lewis acids. The donor

atoms of the MOFs are present in the molecules of the organic linkers. Pre- or post-synthesis functionalization of

the frameworks can increase the number of O-, S-, or N-containing groups in order to enhance the adsorption
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selectivity and efficiency of the target metal ions. Since Lewis acid–base interactions are critical for metal

adsorption onto the donor atoms of the MOFs, it is obvious that the pH of the solution plays the most critical role,

influencing the adsorption process and kinetics. In low pH value, those atoms are protonated, and adsorption

cannot take place due to the repulsive forces of the cationic form of metal with the positively charged adsorption

sites . However, by increasing the pH of the aqueous samples that contain the metal ions, the donor atoms of

the adsorbent are deprotonated and they become favorable for complex formation and sorption of the target

analytes. In basic solutions, the addition of hydroxide may lead to complex formation and precipitation of many

metals, therefore, after a certain pH value, any further increase can lead to a decrease of the sorption efficiency 

.

Adsorption by coordination is another adsorption mechanism in which the functionalization plays a key role. For

instance, Liu et al. showed that the post-synthetic modification of Cr-MIL-101 with incorporation of -SH

functionalities led to an improvement of Hg(II) removal, even at ultra-low concentrations . This improvement was

linked to the coordination between Hg(II) with the -SH groups. The incorporation of thiol-containing benzene-1,4-

dicarboxylic acid (BDC) linkers in the case of UiO-66 MOF resulted in a material capable of simultaneously

adsorbing As(III) and As(V) oxyanions. The adsorption of the former occurred via coordination to the -SH groups,

while of the latter by the binding of the oxyanions to the Zr O (OH)  cluster via hydroxyl exchange . The

hydroxyl exchange mechanism was also proposed as the predominant capturing pathway in the study of Howard

and co-workers , in which they studied the adsorption of Se(IV) and Se(VI) in water by seven Zr-based MOFs

(UiO-66, UiO-66-NH , UiO-66-(NH ) , UiO-66-(OH) , UiO-67, NU-1000, and NU-1000BA).

Additionally, the adsorption mechanism with metal–organic frameworks can be enhanced via the chelation

mechanism, after functionalization of MOFs with compounds that can form chelating complexes with the metal ions

. For example, functionalization of metal–organic frameworks with dithizone can enhance Pb extraction by

forming penta-heterocycle chelating complex compounds. In this case, the binding sites of the chelating molecules

are also protonated in low pH values and adsorption cannot take place. Adsorption capacity increases with

increasing pH until a certain point, normally at a pH value of 5 to 6. Further increase in pH value can lead to

precipitation of the target analytes, due to hydrolysis .

In the case of the physical-based adsorption, various interactions can be responsible for the elevated adsorptive

capability of MOFs as mentioned above. The net charge of the framework and the presence of specific functional

groups have a positive impact on the extent of the physical interactions . The manipulation of the above can be

achieved by grafting of particular species/groups into the framework or by tuning the net charge as a result of the

solution pH in which the adsorption takes place.

The electrostatic interactions between the negatively charged adsorption sites of MOFs with the oppositely charged

adsorbates are the most widely reported pathway . The diffusion of the metal ions toward the active sites prior to

the blockage of the outer entrances of the channels is also an important aspect and so, the volume, geometry, and

size of the pores are of paramount importance .
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4. Sample Preparation Techniques for the Extraction of Metal
Ions

Solid-phase extraction (SPE) is a well-established analytical technique that has been widely used for the

extraction, preconcentration, clean-up, and class fractionation of various pollutants from environmental, biological,

and food samples. Different sorbents have been evaluated for the SPE procedure usually placed into cartridges

. MOFs have been employed as sorbents for the solid-phase extraction. In a typical SPE application, the sorbent

is conditioned to increase the effective surface area and to minimize potential interferences, prior to the loading of

the sample solution onto a solid-phase . The analytes are retained onto the active sites of the sorbent and

the undesired components are washed out. Finally, elution of the analytes with the desired solvent is carried out

.

SPE and other conventional sample preparation techniques like protein precipitation and liquid–liquid extraction

(LLE) have fundamental drawbacks such as time-consuming complex steps, difficulty in automation, and need for

large amounts of sample and organic solvents. Novel extraction techniques, including MSPE, d-SPE, SBSE, and

PT-SPE, have been developed in order to overcome these problems. Figure 2 shows the typical steps of MSPE

and d-SPE. Recently, MOFs have been used as sorbents for these extraction techniques .

Figure 2. Typical magnetic solid-phase extraction (MSPE) and dispersive solid-phase extraction (d-SPE)

procedures for the enrichment and analysis of trace metal ions.

Dispersive solid-phase extraction is performed by direct addition of the sorbent into the solution that contains the

target analytes. Various MOF materials have been employed for the d-SPE of metal ions from complex sample

matrices. After a certain time, the sorbent is retrieved from the solution with centrifugation or filtration and the

solution is discarded. Elution with an appropriate solvent is performed and the liquid phase is isolated for

instrumental analysis. The dispersion is often enhanced by stirring, vortex mixing, or ultrasound irradiation, in order

to enable an efficient transfer of the target analytes to the active sites of the sorbent. Therefore, several devices
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including shakers, vortex mixers, and ultrasonic probes and baths have been implemented for sorbent dispersion.

Until today, the ultrasound-assisted dispersive solid-phase microextraction is the most common d-SPE approach

.

MSPE is based on the use of sorbents with magnetic properties. There are several different procedures to fabricate

magnetic MOFs that have been employed to prepare sorbents for MSPE. The most common approaches are the

direct post-synthesis of magnetic MOF materials with magnetic nanoparticles and the second one, in situ growth of

magnetic nanoparticles during the synthesis of the framework. In the first case, the desired MOF and the magnetic

nanoparticles (Fe O ) are synthesized separately and mixed under sonication. For the in situ approach, the MOF is

added to a solution containing the reagents for the synthesis of Fe O  in order to give a magnetic material.

Moreover, single-step MOF coating can take place by adding the Fe O  nanoparticles into a mixture of inorganic

and organic precursors for MOF synthesis. Carbonization of some MOFs can shape magnetic nanoparticles due to

aggregation of the metallic component of the MOF. At the same time, the organic linker is converted to a porous

carbon. Finally, the layer-by-layer approach is based on the sequential immobilization of the different components

of the MOFs into a functionalized support.

For the typical MSPE procedure, a magnetic sorbent is added to the sample for sufficient time in order to ensure a

quantitative extraction. After this period of time, an external magnet is employed to retrieve the sorbent and the

sample is discarded. The sorbent is washed and an appropriate solvent is added in order to desorb the analytes.

After magnetic separation, the eluent can be directly analyzed or it can be evaporated and reconstitute in an

appropriate solvent prior to the analysis .

Other extraction techniques that can be coupled with MOFs in order to extract different analytes from complex

matrices are stir bar sorptive extraction (SBSE) and pipette tip solid-phase extraction (PT-SPE). SBSE is an

equilibrium technique, initially introduced by Baltussen et al. In this technique, extraction of the analytes takes

place onto the surface of a coated stir bar . PT-SPE is a miniaturized form of SPE in which ordinary pipette

tips act as the extracting column and small amount of sorbent is packed inside the tip . Only a small range of

SBSE and PT-SPE sorbents are commercially available, which limits the possible applications of those techniques.

MOF materials have been successfully used as coatings for stir bars and as packed sorbents in pipette tips 

.

Although MOFs pose several benefits as extraction sorbents for SPE, MSPE d-SPE, SBSE, and PT-SPE, their

water stability and selectivity have to be enhanced with appropriate functional groups or pore functionalization.

Therefore, the type of metal–organic framework and the possible functionalization should be carefully chosen.

Other parameters that should be thoroughly investigated are the pH value of the sample solution, the extraction

and desorption time, the desorption solvent, etc.

As mentioned before, the pH of the sample solution is one of the most critical parameters for the extraction of

heavy metals from aqueous samples. Therefore, the pH value has to be optimized carefully in order to allow the
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Lewis acid–base interactions between the sorbent and the target analytes and to prevent precipitation due to

hydrolysis.

The mass of the MOF material, as well as the extraction time, are other parameters that can influence the

extraction step and require optimization. First of all, an optimum adsorbent amount is necessary in order to

maximize the extraction efficiency. Certain extraction time is also required to facilitate the interaction between the

analytes and adsorption sites of the MOF material. Finally, the sample volume and the volume of the eluent has to

be optimized in order to provide a higher enrichment factor that is possible.

Regarding the desorption step, among the parameters that should be thoroughly investigated are the type, the

volume, and the concentration of the eluent. In most cases, elution can be achieved with acidic solutions of nitric or

hydrochloric acid. The presence of H  ions weakens the interaction between the analyte and the MOF, as it

competes for binding with the active sites of the adsorbent. However, decomposition of most MOFs has been

observed in acidic conditions. Other reagents that have been used for the elution of metal ions without

decomposing the MOF material are EDTA, NaCl, NaOH in EDTA, NaOH in thiourea, etc. Furthermore, enough

desorption time should be provided in order to enable the quantitative elution of the adsorbed analytes.

Other parameters that can be investigated are the stirring speed, salt addition, the use of ultrasonic radiation, etc.,

depending on the extraction procedure . The optimization of the experimental parameters can be

performed by evaluating one-factor-at-a-time or by performing Design of Experiments (DoE), such as Box–

Behnken experimental design .

Finally, the effect of potentially interfering ions that naturally occur in the various sample matrices, the adsorption

capacity of the MOF material, as well as the reusability of the sorbent should be also evaluated .

5. Applications of Metal–Organic Frameworks for the
Extraction of Metal Ions

The applications of MOFs for the extraction of metal ions from environmental, biological, and food samples, as well

as the obtained recoveries and limits of detection (LODs), are summarized in Table 1.

Table 1. Applications of metal–organic frameworks for the extraction of metal ions.

+
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Analyte Organic Linker of MOF

Metal

of

MOF

Modification Matrix

Sample

Preparation

Technique

Detection Technique
Recovery

(%)

LOD

(ng mL )

Reusability Ref.

Pd(II) Trimesic acid Cu Fe O @Py Fish,

sediment,

soil, water,

MSPE FAAS 96.8–

102.5

0.37 -

−1

3 4
[75]
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Analyte Organic Linker of MOF

Metal

of

MOF

Modification Matrix

Sample

Preparation

Technique

Detection Technique
Recovery

(%)

LOD

(ng mL )

Reusability Ref.

 
Malonic acid Ag - Water SPE FAAS >95 0.5

Up to 5

times

Pb(II)

Trimesic Acid Cu DHz, Fe O Water MSPE ETAAS 97–102 0.0046

At least

80

times

Trimesic Acid Cu Fe O @SH

Rice, pig

liver, tea,

water

MSPE FAAS >95 0.29–0.97 -

meso-tetra(4-

carboxyphenyl) porphyrin
Zr -

Cereal,

beverage,

water

d-SPE FAAS 90–107 1.78

Up to

42

times

 
Trimesic acid Cu

Fe O @4-(5)-imidazole-

dithiocarboxylic acid

Fish,

canned

tune

MSPE CVAAS 95–102 10

At least

12

times

Hg(II)

Trimesic acid Cu Thiol-modified silica

Fish,

sediment,

water

d-SPE CV-AAS 91–102 0.02 -

3′5,5′-

azobenzenetetracarboxylic

acid

Cu -
Tea,

mushrooms
d-SPE AFS

Average

93.3

>0.58 mg

kg

Up to 3

times

Benzoic acid and meso-

tetrakis(4-

Carboxyphenyl)porphyrin

Zr - Fish PT-SPE CVAAS 74.3–

98.7

20 × 10 At least

15

times

−1
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